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Fig. 1. (a) The challenge of looking around the corner deals with the recovery of information about objects beyond the direct line of sight. In this illustration of
a setting proposed by Velten et al. [2012], an unknown object is located in front of a wall, but additional obstacles occlude the object from any optical devices
like light sources or cameras. Our only source of information are therefore indirect reflections off other surfaces (here, a planar “wall”). A point on the wall
that is illuminated by an ultrashort laser pulse turns into an omnidirectional source of indirect light (“laser spot”). After scattering off the unknown object,
some of that light arrives back at the wall, where it forms an optical “echo” or space-time response (shown are 2D slices) that can be picked up by a suitable
camera. Locations on the wall can be interpreted as omnidirectional detector pixels that receive different mixtures of backscattered light contributions at
different times. We assume that neither camera nor laser can directly illuminate or observe the object, leaving us with the indirect optical space-time response
as the only source of information. Note that for the sake of clarity, laser source, camera, and occluder are not shown here. The complete setup is illustrated
in Figure 2. (b) We propose a novel transient renderer to simulate such indirectly scattered light transport efficiently enough for use as a forward model in
inverse problems. In this artistic visualization, light contributions removed by the shadow test are marked in red, and the net intensity in blue. Together with
an optimization algorithm, the renderer can be used to reconstruct the geometry of objects outside the line of sight. (c) Left to right: ground-truth object
geometry; reconstruction using a state-of-the-art method (ellipsoidal backprojection); reconstruction using the technique presented in this paper. Top row:
BunnyGI dataset; bottom row: Mannequin1Laser dataset. Our method relies on highly efficient and near-physical forward simulation, and it exemplifies the
use of computer graphics as a technical tool to solve inverse problems in other fields.

Being able to see beyond the direct line of sight is an intriguing prospective
and could benefit a wide variety of important applications. Recent work
has demonstrated that time-resolved measurements of indirect diffuse light
contain valuable information for reconstructing shape and reflectance prop-
erties of objects located around a corner. In this paper, we introduce a novel
reconstruction scheme that, by design, produces solutions that are consistent
with state-of-the-art physically-based rendering. Our method combines an
efficient forward model (a custom renderer for time-resolved three-bounce
indirect light transport) with an optimization framework to reconstruct ob-
ject geometry in an analysis-by-synthesis sense. We evaluate our algorithm
on a variety of synthetic and experimental input data, and show that it grace-
fully handles uncooperative scenes with high levels of noise or non-diffuse
material reflectance.
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1 MOTIVATION
Every imaging modality from ultrasound to x-ray knows situations
where the target is partially or entirely occluded by other objects
and therefore cannot be directly observed. In a recent strand of work,
researchers have aimed to overcome this limitation, developing a
variety of approaches to extend the line of sight of imaging systems,
for instance using wave optics [Boger-Lombard and Katz 2018; Katz
et al. 2014] or by using the occluder itself as an accidental imager
[Bouman et al. 2017]. Among all the techniques proposed, a class of
methods has received particular attention within the computer vi-
sion and imaging communities. The main source of information for
these methods are indirect reflections of light within the scene, rep-
resented by time-resolved impulse responses. From such responses,
it has been shown that the presence and position of objects “around
a corner” [Kirmani et al. 2009], or even their shape [Velten et al.
2012] and/or reflectance [Naik et al. 2011] can be reconstructed. In
this paper, we focus on the archetypal challenge of reconstructing
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the shape of an unknown object from 3-bounce indirect and (more
or less) diffuse reflections off a planar wall (Figure 1(a)) [Kirmani
et al. 2009]. The overwhelming majority of approaches to this class
of problem rely on ellipsoidal backprojection, where intensity mea-
surements are smeared out over the loci in space (ellipsoidal shells)
that correspond to plausible scattering locations under the given
geometric constraints [Arellano et al. 2017; Buttafava et al. 2015;
Gariepy et al. 2016; Kadambi et al. 2016; Velten et al. 2012]. Ellipsoidal
backprojection implicitly assumes that the object is a volumetric
scatterer, and it does not take into account surface orientation and
self-occlusion of the object. More importantly, unlike linear back-
projection used in standard emission or absorption tomography,
ellipsoidal backprojection is not the adjoint of a physically plausible
forward light transport operator. Where such operators have been
identified [La Manna et al. 2018], they are typically constrained to
rudimentary volumetric, non-opaque, isotropic scattering models.
This necessitates filtering, and the reconstructed shapes are typi-
cally flat and low in detail. On the other hand, algorithms based on
ellipsoidal backprojection generally have much shorter runtimes
than our approach, since they do not require a global optimization
scheme.

Here, we propose an alternative approach that mitigates some of
the problems of backprojection by formulating the non-line-of-sight
sensing problem in an analysis-by-synthesis sense. In other words,
we develop a physically plausible and efficient forward simulation of
light transport (transient renderer) and combine it with a nonlinear
optimizer to determine the scene hypothesis that best agrees with
the observed data. The method is enabled by a number of technical
innovations, which we consider the key contributions of this work:

• a scene representation based on level sets and a surface-
oriented scattering model for time-resolved light transport
around a corner (wall to object to wall) based on time-resolved
radiative transfer,
• an extremely efficient GPU-based custom renderer for three-
bounce backscatter that features near-physical handling of
occlusion effects and a novel temporal filtering scheme for
triangular surfaces, and
• a global, self-refining optimization strategy to minimize the
reconstruction error.

We evaluate our method on a number of synthetic and experimen-
tal datasets and find that it is capable of achieving significantly
higher object coverage and detail than ellipsoidal backprojection,
even on greatly reduced and degraded input data. Our renderer not
only naturally accommodates surface BRDFs, but is also open to
extensions like higher-order light bounces or advanced background
models that will be needed in order to tackle future non-line-of-sight
sensing problems. The method, as proposed here, is not capable of
delivering high reconstruction rates in this first implementation.
However, we believe that being able to generate transient render-
ings for the around-the-corner setting very efficiently will enable
novel approaches to the problem, for instance based on machine
learning.

2 RELATED WORK
The research areas of transient imaging and non-line-of-sight re-
construction have recently received tremendous attention from the
computer vision, graphics, imaging and optics communities. For a
structured overview on the state of the art, we refer the interested
reader to a recent survey [Jarabo et al. 2017].

2.1 Transient imaging
Imaging light itself as it propagates through space and time poses
the ultimate challenge to any imaging system. To obtain an idea of
the frame rate required, consider that in vacuum, light only takes
about 3 picoseconds (3 · 10−12 𝑠) per millimeter of distance traversed.
The typical transient imaging system consists of an ultrashort (typi-
cally, sub-picosecond) light source and an ultrafast detector. Oddly,
three of the highest-performing detection technologies are over 40
years old: streak tubes [Velten et al. 2011] wherein a single image
scanline is “smeared out” over time on a phosphor screen; holog-
raphy using ultrashort pulses [Abramson 1978], and gated image
intensifiers [Laurenzis and Velten 2014b]. More common nowadays,
however, are semiconductor devices that achieve comparable tem-
poral resolution without the need for extreme light intensities or
voltages. Among the technologies reported in literature are reg-
ular reverse-biased photodiodes [Kirmani et al. 2009], as well as
time-correlated single-photon counters which conveniently map to
standard CMOS technology [Gariepy et al. 2015]. On the low end, it
has also been shown that transient images can be computationally
reconstructed from multi-frequency correlation time-of-flight mea-
surements [Heide et al. 2013], although data thus obtained typically
suffers from the low temporal bandwidth of these devices, which
necessitates heavy regularization.

2.2 Transient rendering
The simulation of transient light transport, when done naïvely, is
no different from regular physically-based rendering, except that
for each light path that contributes to the image, its optical length
must be calculated and its contribution stored in a time-of-flight his-
togram [Smith et al. 2008]. A number of offline transient renderers
have been made available to the public [Jarabo et al. 2014; Slaney
and Chou 2014]. Even with advanced temporal sampling [Jarabo
et al. 2014] and efficiency-increasing filtering strategies such as
photon beams [Marco et al. 2017], such renderers still take on the
order of hours to days to produce converged results. In contrast,
the special-purpose renderer introduced in this paper is capable of
producing close-to-physical renderings of around-the-corner set-
tings in a matter of milliseconds. Finally, there have been efforts
to simulate the particular characteristics of single-photon counters
[Hernandez et al. 2017], an emerging type of sensor that can be
expected to assume a major role in transient imaging.

2.3 Analysis of transient light transport and looking
around corners

The information carried by transient images has been the subject
of several investigations. Wu et al. laid out the geometry of space-
time streak images for lensless imaging [2012], and discussed the
influence of light transport phenomena such as subsurface scattering
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on the shape of the temporal response [2014]. Economically, the
most important use of transient light transport analysis today is
likely in multi-path backscatter removal for correlation-based time-
of-flight ranging [Fuchs 2010, and many others].

In this paper, we direct our main attention to the idea of exploiting
time-resolved measurements of indirect reflections for the purpose
of extending the direct line of sight and, in effect, looking around
corners [Kirmani et al. 2009; Velten et al. 2012]. While a variety of
geometric settings have been investigated, the bulk of work in this
area relies on the arrangement illustrated in Figure 1(c) and Figure 2
and further introduced in the following Section 3.
The reconstruction strategies can be roughly grouped in two

classes. One major group is formed by backprojection approaches
where each input measurement casts votes on those locations in
the scene where the light could have been scattered [Arellano et al.
2017; Buttafava et al. 2015; Gariepy et al. 2016; Kadambi et al. 2016;
Laurenzis and Velten 2014b; Velten et al. 2012]. A smaller but more
diverse group of work relies on the use of forward models to arrive
at a scene hypothesis that best agrees with the measured data. Here,
reported approaches fall into several categories. A combinatorial
labeling scheme was developed by Kirmani et al.[2009]. If the cap-
ture geometry is sufficiently constrained, frequency-domain inverse
filtering [O’Toole et al. 2018a] can be employed. Variational methods
using simple linearized light transport tensors [Heide et al. 2014;
Naik et al. 2011] and simplistic models based on radiative transfer
[Klein et al. 2016; Pediredla et al. 2017] are (in principle) capable
of expressing opacity effects like shadowing and occlusion, and
physically plausible shading. These approaches are closest to our
proposed method. In concurrent work, Heide et al. [2017] added
such extra factors as additional weights into their least-squares data
term, achieving non-line-of-sight reconstructions of significantly
improved robustness. Thrampoulidis et al. [2017] applied a similar
idea on the reconstruction of 2D albedo maps on known geometry
that are further obscured by known occluders between object and
wall. For homogeneous volumetric media in direct sight, Gkioulekas
et al. [2013] extensively relied on physically-based rendering to
recover their scattering parameters and phase function. With the
proposed method, we demonstrate what we believe is the first re-
construction scheme for non-line-of-sight object geometry that is
based on a near-physical yet extremely efficient special-purpose
renderer and, by design, produces solutions that are self-consistent.
We believe that our work can serve as an example for other uses
of computer graphics methodology as a technical tool for solving
inverse problems in imaging and vision.

3 PROBLEM STATEMENT
Here we introduce the geometry of the non-line-of-sight reconstruc-
tion problem as used in the remainder of the paper. For simplicity,
we neglect the constant factor 𝑐 (the speed of light) connecting time
and (optical) path length. Thus, time and distance can be used syn-
onymously and all discussions become independent of the absolute
scale.
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Fig. 2. Schematic top view of the scene arrangement, where the unknown
object is occluded from direct observation. We assume that the temporal
response has been “unwarped” (e.g., [Kadambi et al. 2016]), so only the
occluded segments 𝑎 and 𝑏 contribute to the total time of flight and to the
shading in Equation 4.

3.1 Problem geometry and transient images
We model our setting after the most common scenario from litera-
ture (Figure 2), where the unknown object is observed indirectly by
illuminating a wall with a laser beam and measuring light reflected
back to the wall. Following Kadambi et al. [2016], the laser spot
on the wall acts as an area light source, and observed locations on
the wall are equivalent to omnidirectional detectors that produce
an “unwarped” transient image [Velten et al. 2013] (Figure 1(a)).
The extent of the observed wall, the size of the object and its dis-
tance to the wall are usually on the same order of magnitude. The
transient image or space-time response I ∈ R𝑛𝑥×𝑛𝜏 is the entirety
of measurements taken using this setup, 𝑛𝑥 being the number of
combinations of detector pixels and illuminated spots and 𝑛𝜏 the
number of bins in a time-of-flight histogram recorded per location.
For a two-dimensional array of observed locations (for instance,
when using a time-gated imager), the space-time response can be
interpreted as a three-dimensional data cube similar to a video.

3.2 Problem formulation
The idea underlying ellipsoidal backprojection is that any entry in
the transient image, or the response of a pair of emitter and detector
positions for a given travel time, corresponds to an ellipsoidal locus
of possible candidate scattering locations. If no further information
is available, any measured quantity of light therefore “votes” for
all locations on its ellipsoid. Finally, the sum or product of all such
votes is interpreted as occupancy measure, or probability of there
being an object at any point in space. We refer to a recent study
[La Manna et al. 2018] that discusses the design options for such
algorithms in great detail.

In contrast, we formulate the reconstruction task as a non-linear
least-squares minimization problem

min
P
∥Iref − 𝐼 (𝐺 (P)) ∥22 , (1)

where P is a parameter vector describing the scene geometry, 𝐺 ( · )
is a function that generates explicit scene geometry (a triangle
mesh), Iref is the measured space-time scene response, and 𝐼 ( · ) is a
forward model (renderer) that predicts the response under the scene
hypothesis passed as argument. The purpose of the optimization is
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Fig. 3. Overview of our analysis-by-synthesis scheme for looking around
a corner. Our pipeline heavily relies on custom-made components (scene
representation, renderer, residual function, optimizer) to make this approach
viable.

to find the scene geometry𝐺 (P) that minimizes the sum of squared
pixel differences between the predicted and the observed responses.
Figure 3 illustrates this principle.
A key feature of this formulation is that the solution by its very

definition is optimally consistent with the chosen physical model of
light transport, and that ongoing improvements in forward model-
ing will also benefit the reconstruction. Furthermore, our approach
naturally handles opaque, oriented surfaces, whereas in backprojec-
tion, surface geometry is implicitly defined and needs to be derived
using additional filtering steps . Furthermore, our method is able
to handle arbitrary surface BRDFs, where current backprojection
methods implicitly assume diffuse cloud-like scattering [La Manna
et al. 2018]. A downside of our approach is that it requires a full
model of the scene, and that any unknowns (such as background or
noise) can distort the solution in ways that are hard to predict. On
the other hand, we believe that our approach lends itself for future
extensions like higher-order light bounces.

4 METHOD
In the following, we introduce the components of our reconstruction
algorithm in detail.

4.1 Geometry representation
We seek to parameterize the scene geometry in terms of a vector P
that has a small number of degrees of freedom to make the optimiza-
tion in Equation 1 tractable. Rather than using P to directly store a
mesh representation with vertices and faces, we express the geome-
try implicitly as an isosurface of a scalar field𝑀P (x) composed of
globally supported basis functions. This approach is also common
in surface reconstruction from point clouds [Carr et al. 2001]. In our
case, the vector P,

P = (p1, . . . , p𝑚)
= ((x1, 𝜎1), . . . , (x𝑚, 𝜎𝑚)), (2)

τ1 τ2 τi τi +1 τ3

Di�erential 
temporal irradiance
∂E/∂τ

Path length / travel timeSender Receiver

τ

Irradiance
in i th temp. bin

Surface element
with vertices
and centroid

Fig. 4. To compute the total irradiance𝛼𝑡 contributed by a surface triangle to
a given detector pixel, we evaluate the radiative transfer using the element’s
centroid. We then use a first-order filter to distribute this irradiance over the
temporal bins that are affected by the triangle. To this end, we compute the
three optical path lengths, or travel times, 𝜏1...3 belonging to the triangle’s
three vertices. The irradiance ending up in any temporal bin is then obtained
by constructing a triangular function of total area 𝛼𝑡 using the three arrival
times as illustrated, then geometrically integrating over the time interval
that corresponds to the bin. The true temporal distribution depends on the
position and orientation of the triangle. However, the effectiveness of the
temporal filter can be seen in Table 1 and Figures 5 and 8.

lists the centers x𝑖 and standard deviations 𝜎𝑖 of𝑚 isotropic Gauss-
ian blobs. From the scalar field

𝑀P (x) =
𝑚∑
𝑖=1

𝑒−∥x−x𝑖 ∥
2
2/(2𝜎2

𝑖 ) (3)

we extract the triangle mesh 𝐺 (P) using a GPU implementation of
Marching Cubes [Lorensen and Cline 1987]. For all our reconstruc-
tions, we used a fixed resolution of 1283 voxels for the reconstruction
volume, and a fixed threshold of 3

4 for the isosurface. The extension
to other implicit functions, such as anisotropic Gaussians or general
radial basis functions, is trivial.

4.2 Rendering (synthesis)
We propose a custom renderer that is suitable for use as forward
model 𝐼 ( · ) inside the objective function, Equation 1. In order to
be suited for this purpose, the renderer must be sufficiently close
to physical reality. At the same time, it has to be very efficient
because hundreds of thousands of renderings may be required over
the course of the optimization run. We achieve this efficiency by
restricting the renderer to a single type of light path and rendering
only light bounces from the wall to the object and back to the wall.
Following the notation of [Pharr and Humphreys 2010] and by
dropping any constant terms, we can write the incoming radiance
for each camera pixel as

𝐿 =

∫
𝑂
𝑓
(
𝑆𝑊𝐿
→𝑆𝑂→𝑆𝑊𝐶

)
𝜂
(
𝑆𝑂↔𝑆𝑊𝐶

)
𝜂
(
𝑆𝑊𝐿
↔𝑆𝑂

)
d𝑆𝑂 , (4)

where 𝑂 = 𝐺 (P) denotes the object, 𝑓 the object’s BRDF and 𝑆_
surface points as shown in Figure 2. The geometric coupling term 𝜂
is defined as

𝜂 (𝑆1↔𝑆2) = 𝑉 (𝑆1↔𝑆2) |cos(𝜃1) | |cos(𝜃2) |∥𝑆1 − 𝑆2∥22
, (5)

with 𝑉 being the binary visibility function and 𝜃𝑖 the angle of the
ray connecting 𝑆1 and 𝑆2 to the respective surface normal. Since
our object is already represented as a triangle mesh, we are able to
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Fig. 5. The temporal filter also results in overall smoother spatial slices
of the space-time response. Here we verify the performance of the filter
by rendering the response generated by a planar square using different
levels of detail. Shown is a single time slice without (top row) and with
temporal filtering (bottom row). From left to right: coarse tesselation (4×4
quads), medium tesselation (16×16 quads), fine tesselation (128×128 quads).
Numbers indicate the rendering time for the entire transient data cube
(128×128 pixels, 192 time bins) on an NVIDIA GTX 980. Note the significant
quality improvement at only 14–17% increased computational cost.

approximate Equation 4 by assuming a constant radiance over each
triangles’ surface,

𝐿 ≈
∑
𝑡 ∈𝑇

𝑓
(
𝑆𝑊𝐿
→𝑆𝑡→𝑆𝑊𝐶

)
𝜂
(
𝑆𝑡↔𝑆𝑊𝐶

)
𝜂
(
𝑆𝑊𝐿
↔𝑆𝑡

)
𝐴𝑡

C
∑
𝑡 ∈𝑇

𝛼𝑡 .
(6)

Here,𝑇 is the set of all triangles of our object, 𝑃𝑡 is the centroid, and
𝐴𝑡 the area. We denote the total irradiance contributed by triangle 𝑡
as 𝛼𝑡 . In our experiments, we use Lambertian and metal BRDFs, but
other reflectance functions can be used as well. This approximation
can be seen as an extension of the one found in [Klein et al. 2016].
We further add two important features to increase physical realism
and generate a smooth transient image.

Our first addition are visibility tests (𝑉 ) for both segments of the
light path, which is necessary for handling non-convex objects. We
first connect the laser point and the triangle centroid by a straight
line, and test whether this segment intersects with any of the other
triangles of the object mesh. For all visible triangles for which no in-
tersection is found, we test the visibility of the second path segment
(return of scattered light to the wall) in the same way. This shadow
test avoids overestimation of backscatter from self-occluding object
surfaces. We note, however, that our way of performing the test only
for the triangle centroid leads to a binary decision (triangle entirely
visible or entirely shadowed) and therefore potentially makes the
objective non-continuous. This can be reduced by using a triangle
grid of sufficiently high resolution.
To render a transient image, we extend the pixels of the steady-

state renderer to record time-of-flight histograms. The light con-
tribution 𝛼𝑡 enters into this histogram according to the geometric
length of the corresponding light path; this length is simply the sum

of the two Euclidean distances from laser point to point on triangle
and back to the receiving point on the wall (see Figure 2). We found
that the temporal response is prone to artifacts if only the centroid
of the triangle is taken into account for the path length. Instead,
we use the path lengths for the triangle’s three corner vertices to
determine the temporal footprint of the surface element. Using a
linear filter, we then distribute the contribution 𝛼𝑡 over the tem-
poral domain (Figure 4). This procedure ensures that the rendered
outcome is smooth in the temporal and spatial domains even when
a single surface element covers dozens of temporal bins (Figure 5).

4.3 Optimization (analysis)
The optimization problem in Equation 1 is non-convex and non-
linear, so special care has to be taken to find a solution (a set of blobs)
that, when rendered, minimizes the cost function globally. While
it would be desirable to optimize over the whole parameter vector
P simultaneously, this is computationally prohibitive. To address
this problem, we developed the iterative optimization scheme sum-
marized in Algorithm 1, with subroutines provided in Algorithms 2
and 3. Figure 6 shows several intermediate results during execution
of the optimization scheme.

Algorithm 1 Global optimization scheme
Input: Reference image Iref, Threshold 𝑐thresh
Output: Parameter vector P, Cost 𝑐
1: x← sample(∅)
2: P, 𝑐 ← add_blob(∅, x)
3: while 𝑐 > 𝑐thresh do
4: x← sample(P)
5: P1, 𝑐1 ← add_blob(P, x)
6: P2, 𝑐2 ← duplicate_blob(P, x)
7: P3, 𝑐3 ← delete_blob(P, x)
8: 𝑖 ← argmin𝑥 𝑐𝑥
9: if 𝑐𝑖 < 𝑐 then
10: P, 𝑐 ← P𝑖 , 𝑐𝑖
11: end if
12: P𝑟 , 𝑐𝑟 ← reiterate(P)
13: if 𝑐𝑟 < 𝑐 then
14: P, 𝑐 ← P𝑟 , 𝑐𝑟
15: end if
16: P, 𝑐 ← check_delete(P, 𝑐)
17: end while

The heart of our optimization algorithm is the inner optimization
loop iterate(p, P), which determines the 𝑘 = 10 nearest neighbors
of a given pivot blob p using the routine find_neighbors(p, P). It
then optimizes the positions of those blobs using the Levenberg-
Marquardt algorithm, levenberg_marqardt(P) [Levenberg 1944;
Marquardt 1963]. The function set_variable(x) is used to label
these parameters as variable to the solver, while all other blobs are
kept fixed during the optimization run using set_fixed(x). Deriva-
tives for the Jacobian matrix are computed numerically using finite
differences (by repeatedly executing our forward renderer with
the perturbed parameter vector). In a subsequent step, the sizes of
the selected blobs are also included in a second optimization run,
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Fig. 6. Convergence of reconstructed geometry for the Bunny dataset over the course of the optimization. Number pairs denote iteration number and value of
cost function (relative to start value).

Algorithm 2 Inner optimization scheme
1: function iterate(p, P)
2: Popt ← find_neighbors(p, P, 10)
3: set_fixed(P)
4: for all (p̃, �̃�) ∈ Popt do
5: set_variable(p̃)
6: end for
7: P← levenberg_marqardt(P)
8: for all (p̃, �̃�) ∈ Popt do
9: set_variable(p̃)
10: set_variable(�̃�)
11: end for
12: P← levenberg_marqardt(P)
13: 𝑐 ← compute_cost(P)
14: return P, 𝑐

Algorithm 3 Subroutines to Algorithm 1.
1: function add_blob(P, x)
2: p← (x, 𝜎0)
3: return iterate(p, P ∪ p)
1: function check_delete(P)
2: for all p ∈ P do
3: if compute_cost(P \ p) < 𝜂 · 𝑐 then
4: P← P \ p
5: end if
6: end for
7: 𝑐 ← compute_cost(P)
8: return P, 𝑐
1: function duplicate_blob(P, x)
2: p← find_nearest(P, x)
3: p1, p2 ← split(p)
4: return iterate(p, P \ p ∪ p1 ∪ p2)
1: function reiterate(P)
2: p← choose_random(P)
3: return iterate(p, P)
1: function remove_blob(P, x)
2: p← find_nearest(P, x)
3: return iterate(p, P \ p)

with a parameter 𝜎max defining an upper limit for the blob size. We
found that this two-stage approach is necessitated by the strong

non-convexity of the objective function. By optimizing over multi-
ple blobs simultaneously, we allow the optimizer to recover complex
geometry features that are influenced by more than a single blob.
The algorithm starts with a single blob as initial solution, then

performs an outer loop over four phases: sampling, mutation, re-
iteration, and regularization. In the following, we provide a full
description of the individual phases and explain our design choices.
The parameters used in our reconstructions are shown in Table 2.

Sampling. Our algorithm pivots around locations in the recon-
struction volume that are randomly chosen according to a distribu-
tion (PDF) that aims to give problematic regions a higher probability
of being sampled. We obtain the PDF by backprojecting the absolute
value of the current residual image into the working volume. For
locations x that are sampled by the function sample(), our work-
ing hypothesis is that something about the solution should change
there; we address this by selecting the nearest blob to this location
(find_nearest(P, x)) and applying and testing our three mutation
strategies on it. Since each mutation probably increases the cost
function, it is followed by a relaxation of the neighborhood of the
pivot blob.

Mutation. We employ three mutation strategies to generate varia-
tions of the current solution. add_blob(P, x) adds a new blob (x, 𝜎0)
to P. delete_blob(P, x) deletes the blob p ∈ P that is closest to x.
duplicate_blob(P, x) replaces the blob p ∈ P by two new blobs that
are displaced by a vector ±d from the original position so they can
be separated by the optimizer. Out of the three solutions (each one
after performing an inner optimization iterate(p, P) on the neigh-
borhood), the one with the lowest cost 𝑐𝑖 is chosen to be the new
solution. A call to iterate consists of two non-linear optimizations,
one solely over the blob positions, followed by an optimization over
both blob positions and sizes. This procedure is essential due to the
non-convexity of the cost function, initial experiments have shown
that skipping the first optimization generally results in unwanted,
strong local minima, where a single blob spans large parts of the
reconstruction volume.

Reiteration. As the next step, another call to iterate is performed
on a random group of neighboring blobs. This re-evaluation of
previously relaxed blobs is necessary to avoid being stuck in local
minima during early iterations, when the hypothesis does not yet
contain enough blobs to properly describe the transient response.

Regularization. Finally, the algorithm first checks each blob for
its significance to the solution (check_delete), and deletes it if
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doing so does not worsen the total cost by more than a small factor
𝜂. This regularizing step prevents the build-up of excess geometry
in hidden regions that is not supported by the data. It is the only
step that can lead to an increase in the cost 𝑐; all other heuristics
ensure that the cost falls monotonically.

4.4 Implementation details
Our reconstruction software is written in C++. Geometry generation
and rendering are implemented on the GPU, using NVIDIA CUDA
and the Thrust parallel template library for the bulk of the tasks
and the NVIDIA OptiX prime ray-tracing engine for the shadow
tests. The optimization algorithm is implemented using the Ceres
solver [Agarwal et al. 2015]. Intermediate results are visualized
on-the-fly using the VTK library [Schroeder et al. 2006]. We used
various workstations in our experiments, with Intel Core i7 CPUs
and NVIDIA GeForce GPUs ranging from GTX 780 to Titan Xp.

5 EVALUATION
In this section, we verify the correctness of our renderer, and use it
to reconstruct geometry from simulations and experimental mea-
surements of around-the-corner scattered light. Input data, relay
wall parameters, scene geometry, as well as output volumes and
meshes of our proposed method and the state-of-the-art ellipsoidal
backprojection method of [Arellano et al. 2017] can be found in the
supplemental material.

5.1 Scene geometry
All our synthetic experiments were conducted in a consistent scene
setup and our models use the same arbitrary unit for length and
time. The standard temporal resolution (size of histogram bin) of our
virtual detectors is 0.4 units. Typical time resolutions of real-world
devices are 10ps for streak cameras or 100ps for SPAD detectors.
Equating the bin size with these time constants results in a conver-
sion factor to real-world distances of 7.5mm and 75mm per world
unit, respectively. We arranged the scene such that the relay wall
is a diffuse plane at 𝑧 = 0 with normal in positive 𝑧 direction. The
object, with a typical size of 50 units, was located on the 𝑧 axis at
𝑧 = 45. The laser spot was modeled as a cosine-lobe light source
pointing in positive 𝑧 direction at one of four wall locations (45, 0, 0),
(−45, 0, 0), (0, 45, 0) and (0,−45, 0). The range of observed points
on the wall was represented by an area of 80 × 80 units2 which
was observed by an orthographic camera centered at (𝑥,𝑦) = (0, 0).
The synthetic scene parameters can also be found in Table 2 and
the capture geometry of the measured scenes can be found in the
respective publications [Buttafava et al. 2015; O’Toole et al. 2018a].

5.2 Correctness of renderer
Before we evaluate the performance of our overall reconstruction
system, we test correctness and performance of the forward model
that is at its heart, our custom renderer. To this end, we prepare
test scenes and render reference images using Microsoft’s Time of
Flight Tracer [Slaney and Chou 2014], a transient renderer based
on pbrt version 2 [Pharr and Humphreys 2010].

Fig. 7. The physically-based renderingswith andwithout global illumination
are virtually indistingishuable. From left to right: Rendering with global
illumination; rendering without global illumination; difference of the two
renderings.

Using a 30% reflective triangle mesh model of the Stanford Bunny,
we generated two reference renderings of 16 × 16 × 256 spatio-
temporal resolution using the physically-based renderer, one with
full global illumination and one with a maximum path length of 2
reflections. With the cosine light source representing the spot lit
by the laser, a path length of 2 includes light scattering from the
wall to the object and back to the wall, but not light that has been
interreflected at the object or that has bounced between object and
wall multiple times. In Figure 7, both versions are shown along with
the difference. At least for our around-the-corner setting, we found
that the error caused by truncating the path length to 2 is not very
significant, with 69.809dB peak signal-to-noise ratio (PSNR) or a
relative 𝐿2 difference of 0.486%.

Fig. 8. The effect of our augmentations on the rendering error. The top row
shows transient renderings made with our renderer, the bottom row shows
the respective difference to the ground truth toftracer rendering (range
scaled for print). From left to right: Our renderer with all features turned
on; temporal filtering turned off; shadow tests turned off; temporal filtering
and shadow tests turned off. Error metrics for these renderings are provided
in Table 1.

We then used the truncated rendering as reference for our own
renderer, and tested the effect of temporal filtering and shadow
testing on the difference (Figure 8). A naïve version of our renderer,
with all refinements disabled, reached the reference up to an error
of a little under 10%. After activating the temporal filtering and the
shadow tests, our fast renderer delivered a close approximation to
the ray-traced reference with with 69.796dB peak signal-to-noise
ratio (PSNR) or a relative 𝐿2 difference of 0.489%. All error values
are provided at a glance in Table 1. The main result from this inves-
tigation is that both features are essential to our renderer. The gain
in accuracy comes at the expense of significantly increased runtime
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Fig. 9. Rendering performance of four versions of our algorithm
(with/without filtering, with/without shadow test) as a function of out-
put pixel count.
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Fig. 10. Difference between our fast renderer and the ray-traced reference
solution with a varying number of samples per pixels.

Comparison PSNR [dB] Rel. 𝐿2 error [%]
RTFull / RTTrunc 69.809 0.486
RTTrunc / OursFull 69.796 0.489
RTTrunc / OursNoFilter 53.379 3.237
RTTrunc / OursNoShadow 45.638 7.892
RTTrunc / OursNoShadowNoFilter 44.942 8.550

Table 1. Using the Stanford Bunny as test object, we compare our renderer
to ray-traced renderings with maximum path lengths of 2 (RTTrunc) and
∞ (RTFull). With all the features enabled (OursFull), our renderer matches
the ray-traced solution for the 3-bounce setting (wall-object-wall) to 0.49%,
which is on the same order as the influence of global illumination (RTFull)
on this scene. Omission of shadow tests and temporal filtering result in
significantly higher error values.

when using the shadow test (Figure 9). For small numbers of pixels,
a significant part of that runtime is caused by the construction of
acceleration structures—here, about 10ms for an object with approx-
imately 55,000 triangles. Another noteworthy observation is that
the Monte-Carlo rendering used as reference was likely not fully
converged (Figure 10) even after evaluating 250 million samples per
pixel. We expect that more exhaustive sampling would likely have
further reduced the error.

5.3 Geometry reconstruction
We used various types of input data to test our algorithm: synthetic
data generated using a path tracer or our own fast renderer, as well
as experimental data obtained from other sources. The results from
these reconstructions are scattered throughout the paper, referenc-
ing the datasets from Table 2 by their respective names. Meshes
are rendered in a daylight environment using Mitsuba [Jakob 2010],

with a back wall and ground plane added as shadow receivers for
better visualization of the 3D shapes. Note that these planes are not
part of the experimental setup.

Synthetic datasets. After establishing in Section 5.2 that our fast
renderer produces outcomes that are almost identical to the ray-
traced reference, we used both the path tracer and our fast renderer
to generate a variety of around-the-corner input data. In particular,
we prepared several variations of the Mannequin scene, reducing
the number of pixels, the number of laser spots, as well as the
temporal resolution. An overview of our datasets, as well as the
parameters used for reconstruction, can be found in Table 2. Like
the backprojection method, our method has a small number of
parameters: the blob size upper bound 𝜎0 and the regularization
parameter 𝜂.
We show renderings of the reconstructed meshes alongside the

backprojected solutions, obtained using the Fast Backprojection
code provided by Arellano et al. [2017], and ground truth (Fig-
ure 1(c)). They show that the quality delivered by our algorithm,
in general, outperforms the state-of-the-art method on the syn-
thetic datasets examined in this study. The meshes produced by
our method tend to be more complete, smoother, and overall closer
to the true surface. We also performed more quantitative evalua-
tions. Figures 11 and 12 show the error of the recovered surface
in 𝑧-direction for three datasets. We present backprojection results
using two different filters: the Laplacian filter, since it is the most
popular choice in literature, and the modified Difference of Gauss-
ian filter [Laurenzis and Velten 2014a], which produced the most
accurate and low-noise results from a wide range of tested filters.
In general, meshes generated using the backprojection method tend
to lie in front of the true surface. This is due to the way surface
geometry is reconstructed from the density volumes obtained by
the backprojection algorithm. Even if the peak of the density distri-
bution lies exactly on the object geometry, extracting an isosurface
will displace it by a certain distance. We were able to reduce this
effect for the modified DoG filter by suppressing non-maximum
density values along the 𝑧-axis. However, using this filter, we were
still not able to produce reconstructions that achieved the same high
coverage and low error as our method. It is the combination of a
surface-oriented scattering model, in combination with our analysis-
by-synthesis scheme, which vitally enables a reconstruction with
systematic errors as low as the ones exhibited by our method.

Degradation experiments. To put the robustness of our method
to the test, we performed a series of experiments that deliber-
ately deviate from an idealized, noise-free, Lambertian and global-
illumination-free light transport model, or reduce the amount of
input data used for the reconstruction. In a first series of experi-
ments, we sub-sampled the Mannequin dataset both spatially and
temporally, and observed the degradation in reconstructed outcome
(Figure 15). In a second series, we added increasing amounts of Pois-
son noise (Figure 16). Next, we replaced the diffuse reflectance of
the BunnyGI model by a metal BRDF (Blinn model as implemented
by pbrt) and decreased the roughness value (Figure 13). Our fast
renderer used during reconstruction was set to the same BRDF
parameters that were used to generate the input data. Finally, we
constructed a strongly concave synthetic scene (Bowl) and used
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Fig. 11. Absolute depth error (in world units) in the reconstructions obtained from the synthetic Bunny (left), Mannequin1Laser (middle), and Mannequin
(right) datasets. The top row shows error plots for our method, the bottom part shows depth errors for backprojection (BP) using the Laplacian filter and
the modified Difference of Gaussian filter [Laurenzis and Velten 2014a] respectively, with increasing isovalues from top to bottom. The black line indicates
the ground-truth object silhouette. Red color inside the silhouette indicates a missing (false-negative) surface and outside a silhouette it indicates excess
(false-positive) geometry. Note that the range is clamped to [0, 2] for visualization; values plotted in yellow can be significantly higher. See Figure 12 for a
quantitative analysis.

high albedo values in order to test the influence of unaccounted-for
global illumination on the reconstructed geometry (Figure 14).
As expected, in all these examples, the further the data deviates

from the ideal case, the more the reconstruction quality decreases.
While backprojection tends to be more robust with respect to low-
frequency bias (Bowl experiment), our method quite gracefully deals
with high-frequency noise by fitting a low-frequent rendering to it.

For highly specular materials, the discretization of the surface mesh
and the sensing locations on the wall may lead to sampling issues:
specular glints that are missed by the forward simulation cannot
contribute to the solution.

Experimental datasets. We show reconstructions of two experi-
mental datasets obtained using SPAD sensors.
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Fig. 12. Evaluation of the depth map coverage in the 𝑥-𝑦 plane (higher is
better) and the median absolute depth error in 𝑧 direction (lower is better)
for the Bunny, Mannequin1Laser, and Mannequin datasets. The proposed
method achieves coverage values above 90% with a median depth error as
low as 0.03 to 0.05 world units. For the state-of-the-art method (evaluated
using the Laplacian filter and the modified Difference of Gaussian filter
[Laurenzis and Velten 2014a]), no isovalue is capable of simultaneously
achieving high coverage and low depth error. We note that the modified
DoG filter generates less noise than the Laplacian filter for low isovalues. A
qualitative visualization of this study can be found in Figure 11.

The first dataset (SPADScene) was measured by Buttafava et
al. [2015], by observing a single location on the wall with a SPAD

Fig. 13. Reconstruction of the BunnyMetal* scenes with pbrt’s metal BRDF
applied to the object (top row: Blinn roughness 0.05; bottom row: Blinn
roughness 0.01). From left to right: reference rendering in Grace Cathedral
environment [Debevec 1998]; our proposed method; backprojection.

Fig. 14. Bowl scene. A strongly concave shape with high albedo (top row:
30%; bottom row: 100%) features large amounts of interreflected light in the
input data, which leads to spurious features in the reconstructed geometry.
From left to right: reference geometry; our proposedmethod; backprojection.

detector, and scanning a pulsed laser to a rectangular grid of loca-
tions. We note that this setup is dual, and hence equivalent for our
purpose, to illuminating the single spot and scanning the detector
to the grid of different locations. The dataset came included with
the Fast Backprojection code provided by Arellano et al. [2017]. To
apply our algorithm on the SPADScene dataset, we first subtracted
a lowpass-filtered version (with 𝜎 = 1000 bins) of the signal to re-
duce noise and background, then downsampled the dataset from its
original temporal resolution by a factor of 25.

Like in the original work, the reconstruction remains vague and
precise details are hard to make out (Figure 17). The reconstructed
blobby objects appear to be in roughly the right places, but their
shapes are poorly defined. We note that our method quite clearly
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Mannequin (16 × 16 × 256) MannequinLowTemp (16 × 16 × 32) MannequinMinTemp (16 × 16 × 8) MannequinLowRes (4 × 4 × 256) MannequinMinRes (2 × 2 × 256)

Fig. 15. Reconstruction of the Mannequin* dataset using different levels of degradation. From left to right: Mannequin, MannequinLowTemp,
MannequinMinTemp, MannequinLowRes, MannequinMinRes. Top row: Our reconstruction, bottom row: backprojection. Unlike backprojection, our re-
construction method handles degradations in the input data quite gracefully. Even an extremely low spatial resolution of 2 × 2 pixels or a temporal resolution
of only 8 bins still produces roughly identifiable results.

noise𝐿2,rel = 14.9% noise𝐿2,rel = 25.9% noise𝐿2,rel = 47.1% noise𝐿2,rel = 81.5% noise𝐿2,rel = 149.3%

Fig. 16. Reconstruction of the BunnyGI dataset with different levels of Poisson noise applied to the input data. Relative 𝐿2 error from left to right: 14.9%, 25.9%,
47.1%, 81.5%, 149.3%. Top row: Our reconstruction, bottom row: backprojection. Our algorithm is based on a noise-free forward model. It therefore manages to
localize the object reliably even under very noisy conditions (albeit at reduced reconstruction quality). In the rightmost example (streak plot), at most two
photons have been counted per pixel, resulting in data that contains 50% more noise than signal.

carves out the letter “T” where backprojection delivers a less clearly
defined shape (Figure 18).
The second dataset (OTooleDiffuseS) is a measurement of a

letter “S” cut from white cardboard, which O’Toole et al. measured
via a diffuse wall using their confocal setup [O’Toole et al. 2018a].
In this setup, illumination and observation share the same optical
path and are scanned across the surface. We downsampled the input

data by a factor of 4 × 4 × 4 in the spatial and temporal domains.
Although the inclusion of the direct reflection in the data allowed
for a better background subtraction and white point correction than
in the case of the previous dataset, it becomes clear that there must
be more sources of bias. In particular, we identified a temporal blur
of roughly 3 time bins. Adding a similar blur to our renderer (a box
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filter of width 3 bins), made the reconstructed “S” shape much more
clearly recognizable as such (Figure 19).

Fig. 17. Reconstruction of the experimental SPADScene dataset [Buttafava
et al. 2015]. Shown is the output mesh and the transient data (from left to
right: observation, prediction, residual).

27.5

34
.3

[Bu�afava et al. 2015]

Fig. 18. The “T” object from the experimental SPADScene dataset published
by Buttafava et al. [2015]. Shown are reconstructions obtained using back-
projection (blue) and the proposed method (red), along with approximate
dimensions using the scale provided in the original work (right).

Fig. 19. OTooleDiffuseS dataset [O’Toole et al. 2018a]. From left to right:
photo of diffuse “S”-shaped cutout; surface mesh reconstructed using our
method; mesh reconstructed using method described in [O’Toole et al.
2018a].

6 DISCUSSION
In the proposed approach, we develop computer graphics methodol-
ogy (a near-physical, extremely efficient rendering scheme) to recon-
struct occluded 3D shape from three-bounce indirect reflections. To
our knowledge, this marks the first instance of a non-line-of-sight
reconstruction algorithm that is consistent with a physical forward
model. This solid theoretical foundation leads to results that, under
favorable conditions, show higher object coverage and detail than
the de-facto state of the art, error backprojection. In extreme situa-
tions, like very low spatial / temporal resolutions or high noise levels,
we have shown that our method breaks down significantly later than
the current state of the art (Figures 15 and 16). Under conditions
that are not covered by the forward model (noise, bias/background,

global illumination) the results are on par or slightly inferior to
existing methods. In terms of runtime, our method typically takes
several hours or even days for a reconstruction run (Table 2) and
therefore cannot compete with recent optimized versions of error
backprojection [Arellano et al. 2017] or GPU-based deconvolvers
[O’Toole et al. 2018b], which are typically on the order of 10s to
100s and 1s respectively. However, we consider this a soft hindrance
that has to be considered together with the fact that the capture
of suitable input data, too, is far from being instantaneous. This
latter factor is governed by the physics of light and therefore may
turn out, in the long run, to impose more severe limitations to the
practicality of non-line-of-sight sensing solutions.
We noted that the reconstruction quality of the SPAD datasets

stays behind the quality of the synthetic datasets (whether path-
traced or using our own renderer). Our image formation model
approximates the physical light transport up to very high accuracy
(as shown in Section 5.2), but does not explicitly model the SPAD
sensor response to the incoming light. The SPAD data is biased due
to background noise and dark counts, and the temporal impulse
response is asymmetric and smeared out due to time jitter and af-
terpulsing [Gulinatti et al. 2011; Hernandez et al. 2017]. While these
effects could easily be incorporated into our forward model, doing
so would require either a careful calibration of the imaging setup
(which was not provided with the public datasets) or an estima-
tion of the noise parameters from input data. In this light, we find
the presented results very promising for this line of research, and
consider the explicit application of measured noise profiles and the
modeling of additional imaging setups as future work.

A key feature of our method is that, within the limitations of the
forward model (opaque, but not necessarily diffuse, light transport
without further interreflections) good solutions can be immediately
identified by a low residual error. However, the non-convex objec-
tive and possibly unknown noise and background terms may make
it challenging to reach this point. Our optimization scheme, while
delivering good results in the provided examples, offers no guaran-
tee of global convergence. As of today, it is unclear which of the
two factors will prove more important in practice, the physical cor-
rectness of the forward model or the minimizability of the objective
derived from it.

7 FUTURE WORK
We imagine that extended versions of our method could be used to
jointly estimate geometry and material. Advanced global optimiza-
tion heuristics could further improve the convergence behavior and
the overall quality of the outcome. We imagine that hierarchical ap-
proaches or hybrid solutions might bring further improvement, for
instance by using the (physically inaccurate but global) solution of
one reconstruction scheme to warm-start another local optimization
run using a more accurate model like ours.
The extrinsic and intrinsic calibration of traditional 2D imaging

setups is well understood [Zhang 2000]. However, this problem has
not been satisfyingly solved by the NLOS reconstruction commu-
nity so far. The current best practice is to manually estimate the
positions and normals of the projected camera pixels, potentially
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Fig. 20. An illustration of our preliminary NLOS camera calibration experi-
ment. A transient image of the Bunny scene has been acquired using our
transient renderer. The blue arrows denote the ground truth positions and
normals of the projected camera pixels. The red arrows show an initial guess
before optimization with a positional RMSE of 2.7 units and an average
angular error of 16.6◦. After optimization using Equation 1, the optimized
pixel positions and normals coincide with the ground truth up to floating
point precision. Due to the greatly reduced number of variables compared
to the geometry reconstruction problem, the optimization concluded in less
than one minute.

leading to a systematic bias in the (typically non-metric) recon-
structions. Our proposed method presents not only an alternative
solution to NLOS reconstruction, but also lays out a foundation
for solving related problems. Here, we presented a method for re-
covering the scene geometry, where the acquisition geometry was
assumed to be known. In future work, we would like to study the
dual problem, where the scene geometry is known (a calibration
target), but the acquisition geometry is unknown. We conducted
initial experiments with our synthetic Bunny dataset and were able
to recover the positions and normals of four projected pixels up to a
very high precision, regardless of an overly imprecise initial guess,
see Figure 20. Again, we utilize Equation 1 as the objective function,
but the parameter vector P consists of the positions and normals of
the projected pixels. Challenges will include the generalization to
real-world data, the design of an optimum calibration target, and the
validation against measured data. We could also imagine utilizing
our forward model to estimate the parameters of a SPAD sensor
response model [Hernandez et al. 2017].

Finally, our renderer is not constrained to use in a costly iterative
solver. Just as well, we can imagine using it to enable new machine
learning approaches to the problem. A suitably trained feedforward
neural network, for example, would deliver instant results. Whereas
existing renderers are too slow for generating large amounts of
training data, our renderer would be fast enough to obtainmillions of
datasets in a single day. Together with a suitable signal degradation
model [Hernandez et al. 2017], we expect that it will be possible to
closely approximate the most relevant real-world scenarios.
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Name Reference Resolution # Lasers 𝑠geom 𝑠camera 𝜂 𝜎0 𝑡0 𝛿𝑡 𝑐𝑛/𝑐0 [%] T [min] 𝑛iters 𝑛blobs
Bunny Ours 16 × 16 × 256 4 40 × 40 80 × 80 1.01 1.5 80 0.4 0.32 5096 660 156
BunnyGI pbrt 16 × 16 × 256 4 40 × 40 80 × 80 1.01 1.5 80 0.4 0.59 5611 181 109
BunnyMetal0.05 pbrt 16 × 16 × 256 4 40 × 40 80 × 80 1.01 1.5 80 0.4 2.02 3419 259 101
BunnyMetal0.01 pbrt 16 × 16 × 256 4 40 × 40 80 × 80 1.01 1.5 80 0.4 11.75 3005 361 87
BowlAlbedo0.3 pbrt 16 × 16 × 256 4 26 × 26 80 × 80 1.001 0.4 80 0.4 4.36 5579 167 155
BowlAlbedo1 pbrt 16 × 16 × 256 4 26 × 26 80 × 80 1.001 0.4 80 0.4 31.53 4280 267 197
Mannequin Ours 16 × 16 × 256 4 40 × 494 480 × 80 1.005 1.5 90 0.4 1.46 2326 505 69
MannequinLowRes Ours 4 × 4 × 256 4 40 × 49 80 × 80 1.005 1.5 90 0.4 1.41 1251 252 76
MannequinMinRes Ours 2 × 2 × 256 4 40 × 49 80 × 80 1.005 1.5 90 0.4 4.44 931 350 101
MannequinLowTemp Ours 16 × 16 × 32 4 40 × 49 80 × 80 1.005 1.5 90 3.2 1.21 1322 166 67
MannequinMinTemp Ours 16 × 16 × 8 4 40 × 49 80 × 80 1.005 1.5 90 12.8 7.95 420 102 23
Mannequin1Laser Ours 16 × 16 × 256 1 40 × 49 80 × 80 1.005 1.5 90 0.4 0.59 1419 243 57
SPADScene Measured 185 × 1 × 256 1 — — 1.005 4.5 373 0.748 20.31 1280 328 43
OTooleDiffuseS Measured 64 × 64 × 2048 1 — — 1.01 0.015 0.756 0.0012 33.43 67 13 13

Table 2. Parameters of our reconstructed scenes, where 𝑠geom is the size of the ground truth object projected onto the diffuse camera wall in world units,
𝑠camera is the area covered by the camera in world units, 𝜂 is the drop deletion factor in Algorithm 3, 𝜎0 is the initial blob standard deviation, 𝑡0 is the time
stamp of the first time bin, 𝛿𝑡 is the size of a time bin, and 𝑐𝑛/𝑐0 is the residual cost after optimization (relative to the initial cost). The total reconstruction
times𝑇 are taken from file timestamps and vary due to manual termination of the reconstruction procedure, execution on different GPU models, overhead
through parallel execution of multiple jobs, as well as debugging output. The optimizations terminated after 𝑛iters iterations and consist of 𝑛blobs Gaussian
blobs. Please note that the exact scene geometry is only known for the synthetic experiments.
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