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Parquetry is the art and craft of decorating a surface with a pattern of
differently colored veneers of wood, stone or other materials. Traditionally,
the process of designing and making parquetry has been driven by color,
using the texture found in real wood only for stylization or as a decorative
effect. Here, we introduce a computational pipeline that draws from the
rich natural structure of strongly textured real-world veneers as a source
of detail in order to approximate a target image as faithfully as possible
using a manageable number of parts. This challenge is closely related to the
established problems of patch-based image synthesis and stylization in some
ways, but fundamentally different in others. Most importantly, the limited
availability of resources (any piece of wood can only be used once) turns the
relatively simple problem of finding the right piece for the target location
into the combinatorial problem of finding optimal parts while avoiding
resource collisions. We introduce an algorithm that allows to efficiently
solve an approximation to the problem. It further addresses challenges like
gamut mapping, feature characterization and the search for fabricable cuts.
We demonstrate the effectiveness of the system by fabricating a selection of
pieces of parquetry from different kinds of unstained wood veneer.
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1 MOTIVATION
The use of differently colored and structured woods and other mate-
rials to form inlay and intarsia has been known at least since ancient
Roman and Greek times. In the modern interpretation of this prin-
ciple, pieces of veneer form a continuous thin layer that covers the
surface of an object (marquetry or parquetry) [Jackson et al. 1996].
The techniques denoted by these two terms share many similarities
but are not identical. Marquetry usually refers to a process similar
to “painting by numbers”, where a target image is segmented into
mostly homogeneous pieces which are then cut from more or less
uniformly colored veneer and assembled to form the final ornament
or picture. Parquetry, on the other hand, denotes the (ornamental)
covering of a surface using a regular geometric arrangement of
differently colored pieces. While most artists in their work embrace
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Fig. 1. Fabricated A fabricated piece of wood parquetry, produced using
our pipeline. The inputs are a set of six different wood veneers (bottom left
corner: poplar burl, walnut burl, santos rosewood, quartersawn zebrawood,
olive, fir), and a target image (bottom right corner). The total size of the
parquetry is approx. 27 cm × 34 cm. By combining the different appearance
profiles (including color and grain structures) of multiple wood types, we
are able to produce results with high contrast and fine structural details.

the grain and texture found in their source materials, they mostly
use it as a decorative effect. Nevertheless, the resulting artworks
can attain high levels of detail, depending on the amount of labor
and care devoted to the task (Figure 2).

To overcome the “posterized” look of existing woodworking tech-
niques, make use of fine-grained wood structures, and obtain results
that are properly shaded, we introduce computational parquetry.
Our technique can be considered a novel hybrid of both methods
and is vitally driven by a computational design process. The goal
of computational parquetry is to make deliberate use of the rich
structure present in real woods, using heterogeneities such as knots,
grain or other texture as a source of detail for recreating more faith-
ful renditions of target images in wood, using a moderate number of
pieces, see e.g. Figure 1. Since this goal can only be achieved by ex-
haustively searching suitable pieces of source material to represent
small regions of the target image, the task is absolutely intractable
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Fig. 2. Two modern examples of marquetry portraits of different complexity.
Left: Self-portrait by Laszlo Sandor (using two maple specimens, brown
and black walnut, beech, Indian rosewood, okoume and sapele; original size
approx. 10 cm × 10 cm). Right: Portrait of a girl by Rob Milam (using wenge,
Carpathian elm burl, Honduran rosewood, lauan, pear, plaintree, maple and
ash; original size approx. 53 cm × 53 cm).

to solve by hand. In the computer graphics world, our technique is
closely related to patch-based image synthesis [Barnes and Zhang
2017], texture synthesis [Wei et al. 2009] and photo mosaics [Bat-
tiato et al. 2006], well-explored families of problems for which a
multitude of very elaborate and advanced solutions exist today. To
our knowledge, none of these solutions are prepared to deal with
the fabrication-specific challenges that are inherent to our problem.
Our end-to-end system for fabricated style transfer only uses

commonly available real-world materials and can be implemented
on hobby-grade hardware (laser cutter and flatbed scanner). To
make this new type of computational art accessible to a wide user
base, the source code will be made available at https://github.
com/isering/WoodPixel.

2 RELATED WORK
History of the craft. History knows a rich tradition of techniques

that use patches of material for the purpose of composing images.
Ancient Roman and Greek mosaics are probably the best-known
early instances of this idea. An exemplary mosaic from the second
century AD is shown in Figure 3. Often, such mosaics consist of
largely uniformly shaped primitive shapes (e.g., square tiles) that
are aligned with important structures, such as object boundaries,
found in the target image. A modern counterpart of mosaics is pixel
artwork, which has played a similarly ubiquitous role predominantly
through video games in the 80s and 90s. Here, the design pattern is
generally aligned with a Cartesian grid.
Marquetry can be considered a generalization of mosaic. This

art of forming decorative images by covering object surfaces with
fragments of materials such as wood, bone, ivory, mother of pearl
or metal, has also been known at least since Roman times [Ulrich
2007], see Figure 3. The appearance of the resulting image, however,
is mostly dominated by the choice of materials and the shape of
fragments. The closely related term parquetry refers to the assem-
bly of wooden pieces to obtain decorative floor coverings. Either
technique can be implemented either by carving and filling a wood
surface (inlay) or covering the entire surface with a continuous layer

of thin veneer pieces. The materials can be altered in appearance,
for instance by staining, painting or carving.

Fig. 3. Examples for intarsia and ancient mosaics: The intarsia from the
year 1776 depicts the adoration of St. Theodulf of Trier and a landscape with
plowing farmers and St. Theodulf (left). The mosaic from the 2nd century
AD depicts a scene from the Odyssey (right).

In this paper, we use the term parquetry more restrictively to
refer to two-dimensional arrangements of wood veneer that are
unaltered in color (except for a final layer of clear varnish that is
applied to the entire design). While some artists use computational
tools, such as posterization, to find image segmentations (Figure 2),
we believe that our method marks the first time that a measured
texture of the source material has been used to drive the design
process, explicitly making use of features present in the wood.

Stylization. With the goal of non-photorealistic rendering, nu-
merous techniques have been proposed to transform 2D inputs
into artistically stylized renderings [Kyprianidis et al. 2013]. This
includes approaches for the simulation of different painting me-
dia such as paints, charcoal and watercolor [Chen et al. 2015; Lu
et al. 2013; Panotopoulou et al. 2018]. In recent years, the potential
of deep learning has been revealed for rendering a given content
image in different artistic styles [Jing et al. 2017]. Inspired by the
ancient mosaics and the application of mosaics for arts (see e.g. Sal-
vador Dalí’s lithograph Lincoln in Dalivision [1991] or Self Portrait
I by Chuck Close [1995]), a lot of effort has been spent on non-
photorealistic rendering in mosaic-style. The original photo mosaic
approach [Silvers 1997] creates a mosaic by matching and stitching
images from a database. Further work focused on the application to
non-rectangular grids and color correction [Finkelstein and Range
1998] and tiles of arbitrary shape (jigsaw image mosaics or puzzle
image mosaics) [Di Blasi et al. 2005; Kim and Pellacini 2002; Pavić
et al. 2009], the adjustment of the tiles in order to emphasize image
features within the resulting mosaic [Battiato et al. 2012; Elber and
Wolberg 2003; Hausner 2001; Liu et al. 2010] as well as speed-ups of
the involved search process [Blasi and Petralia 2005; Di Blasi et al.
2005; Kang et al. 2011]. More recently, texturemosaics have also been
generated with the aid of deep learning techniques (e.g. [Jetchev
et al. 2017]). We refer to respective surveys [Battiato et al. 2006,
2007] for a more detailed discussion of the underlying principles.
Furthermore, panoramic image mosaics [Szeliski and Shum 1997]
have been introduced where photos taken from different views are
stitched based on correspondences within the individual images
and a final image blending.

Example-based synthesis. Pixel-based synthesis techniques [Efros
and Leung 1999; Hertzmann et al. 2001; Paget and Longstaff 1998;
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Fig. 4. The proposed end-to-end pipeline for creating faithful renditions of target images based on exploiting the rich structure present in input wood samples
as a source of detail. The involved major steps are data acquisition, cut pattern optimization and the final fabrication of the real-world rendition of the target
image.

Wei and Levoy 2000] rely on copying single pixels from an exem-
plar to the desired output image while matching neighborhood
constraints.
In contrast, patch-based or stitching-based texture synthesis ap-

proaches [Efros and Freeman 2001; Kwatra et al. 2003; Praun et al.
2000] involve copying entire patches from given exemplars. One
major challenge of these approaches is the generation of correspon-
dences between locations in the exemplar image and locations in the
generated output image to copy the locally most suitable patches
from the exemplar to the output image. For this purpose, common
strategies include arranging patches in raster scan order and subse-
quently selecting several patch candidates that best fit to the already
copied patches. As this matching process becomes computationally
challenging for larger images, several investigations focused on
improving matching efficiency [Ashikhmin 2001; Barnes et al. 2011,
2009, 2010; Datar et al. 2004; He and Sun 2012; Liang et al. 2001;
Olonetsky andAvidan 2012; Simakov et al. 2008; Tong et al. 2002;Wei
and Levoy 2000]. In addition, finding an adequate composition and
blending of the copied patches has been addressed based on simple
compositions of irregularly shaped patches [Praun et al. 2000], the
blending of overlapping patches within the overlap region [Liang
et al. 2001], the specification of seams within the overlap region
using dynamic programming or graph cuts [Efros and Freeman
2001; Kwatra et al. 2003], or the application of a weighted averag-
ing for several overlapping regions [Barnes et al. 2009; Simakov
et al. 2008; Wexler et al. 2007]. Furthermore, optimization-based
techniques [Darabi et al. 2012; Han et al. 2006; Kaspar et al. 2015;
Kopf et al. 2007; Kwatra et al. 2005; Portilla and Simoncelli 2000] are
based on the formulation of texture synthesis in terms of an opti-
mization problem which is solved by minimizing an energy function
and combines pixel-based and patch-based techniques. The global
statistics of source patch usage and arrangement can be guided
based on histogram matching [Kopf et al. 2007] or, in the context
of general image editing (including tasks such as re-organization
of objects in the image, image retargeting, inpainting, image fu-
sion/composition), based on image statistics, saliency information,
semantics, and user constraints [Pritch et al. 2009; Taeg Sang Cho
et al. 2008]. The latter applications are related to our work in the
sense that they rely on re-arranging patches/regions of the input
images, where Cho et al. [2008] even only use each patch once as

also done in our work. In contrast to these methods, our approach
involves a cross-domain analysis between an input target image
and images of wooden veneers, where we use the patches of the
wooden veneers to compose a stylized version of the target image.

Recently, the potential of deep learning has also been demon-
strated in the context of optimization-based texture synthesis (see
e.g. [Gatys et al. 2015, 2016; Li and Wand 2016a,b]). For a more
detailed review, we refer to the surveys provided byWei et al. [2009]
and Barnes and Zhang [2017].
Patch-based synthesis in the real world, as described and per-

formed in this work, is characterized by fundamental constraints
that are inherent to the task of parquetry and other forms of real-
world collage. Any piece of input material can only be used once
without being stained, scaled, stretched, copied, blended or filtered.
Our synthesis algorithm therefore restricts itself to cutting oper-
ations and rigid transformations. More importantly, it must keep
track of resource use in order to prevent source patches from collid-
ing with each other. On the output side, the cuts must be fabricable,
i.e., the individual fragments must be connected (no isolated pixels)
and they may not expose too thin protruding structures. We are not
aware of prior work that addressed these specific challenges.

Computational fabrication. Developments in the context of styl-
ized fabrication [Bickel et al. 2018] took benefit from the rapid
progress in fabrication technology. In the context of 2D arts, the com-
putational fabrication of paintings has been approached based on
robotic arms to paint strokes for a given input image (e.g. [Deussen
et al. 2012; Lindemeier et al. 2013; Tresset and Leymarie 2012]). The
fabrication of artistic renditions of images has been approached
based on a computational non-photorealistic rendering pipeline, the
generation of respective woodblocks and a final woodblock printing
process [Panotopoulou et al. 2018]. Further work addressed mosaic
rendering using colored paper [Gi et al. 2006], where computational
approaches have been used for tile generation and tile arrangement.
This is followed by the respective generation of colored paper tiles
and their arrangement according to the energy optimization.
Most works in computational fabrication aim at obtaining con-

stant results despite possible variations in the material used. In
contrast, we embrace the “personality” of the input and use it to
create artworks that are inherently unique.
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3 METHOD
The main objective of this work is the development of a computa-
tional pipeline for creating faithful renditions of a target image I𝑇
from wood samples by exploiting the rich structures in wood as a
source of detail. The pipeline devised in this work takes 𝑛samples
physical, wooden material samples and a target image as inputs and
consists of three major steps: data acquisition, data analysis and cut
pattern generation (i.e. tile generation, arrangement, and bound-
ary shape optimization), and the final fabrication of the real-world
counterpart (Figure 4).

In the first step, the wooden samples are prepared before they can
be scanned with a flatbed scanner. This is followed by extracting
local features in the input images and by detecting corresponding
patches between the source textures and the target image, yielding
a stylized, digital wood parquetry of the target image. Finally, the
patches are converted to cut instructions (taking into account that
the cuts have to be fabricable by a laser cutter), specified pieces
are cut with a laser cutter, and assembled to a physical sample of
parquetry. We discuss details in the following sections.

3.1 Data acquisition
Before the scanning can be conducted, we first prepare the wood
samples. Whereas thicker veneers can be utilized directly, standard
veneers (0.6mm to 0.8mm thick) are glued to a substrate of 1.5mm
birch plywood in order to improve stability and minimize waviness.
Especially burl veneers tend to be very brittle and assume strongly
warped shapes; in contrast, the bending of the substrate is relatively
easy to counter by screwing it to a rigid substrate. We enhance the
contrast of the wood veneers (and consequently the contrast of the
final parquetry) by sanding and applying a thin layer of clear coat
or oil finish. After letting the finishing layer dry, the specimens are
placed on a flatbed scanner and scanned at 300 dpi. The scans are
aligned in order to get a common coordinate frame and a mask is
generated to separate usable veneer from empty background and
screw holes.We note that for larger scale productions, this step could
easily be automated using machine vision techniques. The output of
this step is a set of source textures I𝑆 = {I𝑆,𝑖 : 𝑖 ∈ {1, . . . , 𝑛samples}},
one for each physical wood sample.

3.2 Feature extraction
In order to find patch correspondences between the target image
and the source images, we define a suitable representation for tex-
tural structures within the individual patches. We densely evaluate
texture features using a filter bank consisting of 2 image filters, an
intensity filter and a Sobel edge filter. We have experimented with
higher-dimensional filter banks similar to the Leung–Malik filter
bank [Leung andMalik 2001] and found that the potential increase in
reconstruction quality does not offset the additional computational
cost induced by the higher-dimensional feature space. Applying
the filter bank to an image I results in the 2-dimensional feature
response maps

F(I) =
(
𝑤intens · Fintens (I), 𝑤edge · Fedge (I)

)⊤
, (1)

where F𝑥 are the particular image filters, 𝑤𝑥 ∈ [0, 1] are the fea-
ture weights, 𝑥 ∈ {intens, edge}. The weights allow artistic control

Fig. 5. Synthetic Top row: For a target image exhibiting low contrast and a
bad foreground separation (left) the generated wood puzzle shows the same,
undesirable effects when discarding histogram matching (middle left). In
contrast, applying histogram matching (right) allows to exploit the whole
wood texture gamut, which yields a high contrast at the cost of a strong
change in appearance compared to the target. By interpolating between the
intensity filter responses obtained with and without histogram matching,
we generate a parquetry with medium contrast (middle right). Bottom row:
The images depict the intensity filter response of a wooden veneer panel
(left) and the respective responses obtained for the target image without
histogram matching (middle left) and with histogram matching (right), as
well as their interpolation (middle right).

over the emphasis on overall intensity matching (𝑤intens) and fine
scale gradient features (𝑤edge). Please note that this approach can
easily be expanded to different feature vectors, allowing additional
artistic control. We increase the probability of finding good matches
by taking 𝑛rot rotated versions of the wood source textures into
account.
Source and target textures may exhibit highly different gamuts

and filter response distributions, so we apply a histogram matching
step in order to achieve a meaningful matching between target and
source patches. We use a CDF-based histogram equalization [Russ
2002, ch.4] to transform the intensity distribution of the target image
to that of the available source textures. As the wood samples gener-
ally span a smaller gamut than the target image, gamut mapping
is of great importance to allow for the representation of the target
image based on sampling the whole range of available wood patch
intensities so that characteristic image structures can be empha-
sized. For challenging target images with low foreground contrast
or bad foreground separation (Figure 5) we found that the histogram
equalization tends to overshoot. We alleviate this by interpolating
between equalized and original target intensity,

F′intens (I𝑇 ) = (1 −𝑤hist)Fintens (I𝑇 ) +𝑤histFequalize (I𝑇 , I𝑆 ), (2)

where𝑤hist denotes the interpolationweight, Fequalize the histogram
equalization operator, and I𝑆 the set of all wood textures.

The output of this step is a set of 𝑛samples · 𝑛rot filter responses

F(I𝑆 ) =
{
F(I𝑆,𝑖,𝜙 𝑗

) : 𝑖 ∈ {1, . . . , 𝑛samples}, 𝑗 ∈ {1, . . . , 𝑛rot}
}

(3)

for the source textures, and one filter response F(I𝑇 ) for the target
image. We typically used 𝑛rot = 15 source texture rotations for our
experiments.
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Fig. 6. Before cut pattern optimization, target patches are sorted either by
their accumulated saliency score (left) or by their distance to the image
center (right). Patches overlaid with red color are reconstructed first, yellow
patches are reconstructed last.

3.3 Cut pattern optimization
After evaluating the filter responses, the next step is to find corre-
sponding patches between target image and source textures. Given
a target patch P𝑇 ⊂ I𝑇 consisting of 𝑛𝑃 simply connected pixels
p𝑘 , we determine a corresponding source patch P𝑆 by a dense tem-
plate matching using the sum of squared differences between the
respective feature maps F:

𝐷𝑖, 𝑗 (x) =
𝑛𝑃∑
𝑘=1

(
F(P𝑇 (p𝑘 )) − F(I𝑆,𝑖,𝜙 𝑗

(x + p𝑘 ))
)2

,

P𝑆 = argmin
𝑖, 𝑗,x

𝐷𝑖, 𝑗 (x) .
(4)

We avoid the multiple usage of already matched veneer sample
regions by carrying along a binary mask for each source texture. As
more and more wood area is consumed, the probability of finding
good patch correspondences decreases as the algorithm advances.
The most effective way to remedy this effect is to ensure that a
sufficient amount of panel space for each utilized wood type is
available at all times during reconstruction. Since this might not
always be feasible, we store the target patches P𝑇 in a priority
queue, such that salient patches are reconstructed first. The patches
are sorted either based on their accumulated image saliency score
[Montabone and Soto 2010] or by their distance to the image center,
see Figure 6. While the former method assures that salient image
regions containing high-frequency features will be reconstructed
first (and thus be of potentially higher quality), the latter approach
creates a bokeh-like effect, which produces more visually pleasing
results under a mild shortage of patches with correct low-frequency
(intensity) features. The usage of a priority queue also allows us
to reconstruct multiple target images using the same wood panel,
either sequentially or interleaved. The latter allows us to reconstruct
multiple target images simultaneously by inserting their respective
patches into the queue and sorting them by their image saliency
score.

Target image regions with less salient features can be represented
by larger patches. To exploit this, we implemented an adaptive
patch matching step, where a patch is broken into four smaller
patches if their combined matching cost is lower than the cost of the
larger patch multiplied by a factor𝑤adaptive. The factor𝑤adaptive can
be used to control the artistic balance between larger and smaller
patches. We apply this step 𝑛adaptive (typ. 0 to 2) times.

At the end of this step, we have covered the target image plane
with patches drawn from the source textures I𝑆 .

3.4 Patch shape optimization
In the previous section we have defined how, given a set of target
image patches, correspondences between the target image and the
source textures are determined. In this section, we will discuss
the segmentation of the target image into patches, which has an
enormous influence on the appearance and fabricability of the final
piece of computational wood parquetry art.
Ideally, the shapes and placement of the wood patches would

be determined using a global scheme that jointly performs tem-
plate matching and shape optimization. The computational costs
for solving such a multi-constrained problem, however, would be
prohibitively high. Instead, we explore approaches for decoupling
the segmentation step from the matching problem, in order to make
both computationally tractable and to enable detailed artistic con-
trol.

Our approach is to start with a Cartesian grid that is not aligned
to image features. Reconstructions obtained from such grids have a
strongly stylized look that resembles pixel art and can be attractive
for certain resolutions. However, it may fail to convey sufficient
detail for very coarse grids, in particular when high-contrast areas
have to be reconstructed using a single patch and subsequently
a single type of wood. Consequently, we have implemented two
different refinement strategies.

A-priori, image-space grid morphing (optional). In order to in-
crease the contrast of the fabricated output, it is beneficial to per-
form a feature-aligned segmentation of the target image that leads
to better matching performance than regular grids. We have imple-
mented a semi-automatic, real-time grid morphing application that
allows the user to generate a curvilinear, morphed grid that follows
edge features, preserves fabricability, and reflects the user’s artistic
intent, see Figure 7.
The first step is to generate the edge features that the morphed

grid should follow. To this end, we filter the input image using
two edge-preserving filters: we apply the rolling guidance filter
[Zhang et al. 2014] to filter out small structures (which should
be reconstructed by the template matching, not the overall patch
shape) and apply Canny edge detection [Canny 1986] to extract the
skeletonized edge image ERG. To extract higher-frequency edges,
we smooth the input image using the bilateral filter [Tomasi and
Manduchi 1998] and again use the Canny edge detector to generate
an edge image Ebilateral. We combine the edge images using user-
editable masks MRG, Mbilateral to generate the final edge image E
that our cuts should follow,

E = max (MRG ◦ ERG,Mbilateral ◦ Ebilateral) , (5)

where ◦ denotes the Hadamard product. Given E, we can compute
a scalar potential field that allows us to snap grid vertices to the
filtered edges,

P = max (0,min (𝐷 (E), 𝑟 − 𝐷 (E))) , (6)

where 𝐷 (E) is the distance transform of the binary edge image
[Felzenszwalb and Huttenlocher 2012] and 𝑟 is the attraction radius
of the edges, which is set to half the grid spacing.
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(a) Input image (b) Rolling guidance filter (c) Bilateral filter (d) Potential field (e) Resulting morphed grid

Fig. 7. Selected stages of the grid morphing workflow. We filter the input image (a) using the rolling guidance filter (b) [Zhang et al. 2014] to extract large-scale
image features, as well as using the bilateral filter (c) [Tomasi and Manduchi 1998] to extract higher-frequency features. Canny edge detection [Canny 1986] is
applied to extract edges, which can be selected using a binary mask. Finally, grid points are snapped to the edges under a fabricability constraint by iteratively
solving a mass-spring-system with an additional edge-snapping term using a scalar potential field (d). The output is a smooth, curvilinear grid that follows the
user-selected image edges (e).

Next, we snap mesh vertices to the edge image by iteratively
solving an energy-minimization problem. We model the mesh as
a damped spring-mass system, where each of the mesh vertices x𝑖
is connected to its eight neighbors by linear springs, exerting the
force

F(x𝑖 ) =
∑

x𝑗 ∈N(x𝑖 )
𝑚

(
x𝑗 − x𝑖

)
− 𝛾

d
d𝑡

x𝑖 −𝑤∇𝑃 (x𝑖 )

= Fspring (x𝑖 ) + Fdamp (x𝑖 ) + Fedge (x𝑖 ),
(7)

where𝑚 denotes the vertices’ mass, 𝛾 the damping coefficient, and
𝑤 the weight for the edge-snapping force term. Here, Fedge forces
grid vertices to snap to the edges, while the term Fspring ensures
that vertices adhere to a minimum distance to each other, which in
turn enforces fabricability of the final grid. We find an equilibrium
to Equation 7 using a simple Euler solver.
After the positions of the mesh vertices have been determined,

we continue to generate the mesh edges, i.e. the patch boundaries,
by fitting cubic Bézier curves to the edge image E. Due to the edge
snapping process, some edges do not follow patch outlines, but
run along patch diagonals, in which case we fit an additional edge
and split the respective patches into two triangular ones. In order
to generate a smooth appearance, we enforce G2 continuity while
filling in the remaining (not fitted) edges.
Together, this preserves the pixelized look of the regular grid,

while adding an almost 3D-like appearance due to the curved patch
boundaries.

A-posteriori, cost-based patch refinement (optional). As an alterna-
tive approach to increase the visual fidelity of the final wood puzzle,
we introduce an refinement step after patch matching. To this end,
the initial patch size needs to be increased in order to produce an
overlap between neighboring patches. This area of overlap can be
used to find optimal cuts according to the target image reproduction
cost ∑

𝑥,𝑦

(F(R(𝑥,𝑦)) − F(I𝑇 (𝑥,𝑦)))2 , (8)

where R denotes the reconstructed wood parquetry image and F
denotes the filter response from Section 3.2. Overlapping areas can
be shared by either two or four individual source patches. For image
regions with only two overlapping patches, we obtain an optimum
solution using dynamic programming. For details regarding the

implementation of axis-aligned patch merging using dynamic pro-
gramming see e.g. [Efros and Freeman 2001]. As we enforce our
cuts to be guided by features in the target image, the corresponding,
local cost 𝑐 (𝑥,𝑦) for merging two horizontally neighboring patches
P𝑆,{1,2} along pixel 𝑥 is given by

𝑐 (𝑥,𝑦) =
𝑥−1∑
𝑥 ′=0

(
F(P𝑆,1 (𝑥 ′, 𝑦)) − F(P𝑇 (𝑥 ′, 𝑦))

)2 +
𝑛−1∑
𝑥 ′=𝑥

(
F(P𝑆,2 (𝑥 ′, 𝑦)) − F(P𝑇 (𝑥 ′, 𝑦))

)2
,

(9)

where P𝑇 ⊂ I𝑇 and 𝑛 is the size of the overlap. We assign patch P𝑆,1
to the region left of the cut and P𝑆,2 to the remaining region. By
approaching this problem using dynamic programming, we enforce
6-connectivity of the cut and in turn physical fabricability. Vertically
neighboring patches can be aligned in an analogous manner.

In regions where four patches overlap, we have to find two inter-
secting cuts, one for the horizontal and one for the vertical direction.
This prevents cut optimization via dynamic programming and in-
stead, we find an approximate solution by alternating optimizations
for one cut direction while keeping the other direction fixed. We
experimentally observed two repetitions of this process to be suffi-
cient.
In order to generate a representation that is laser-cuttable, we

fit cubic Bézier curve segments to the cuts, where the user can
choose between G0 continuous and G1 continuous curve segments.
Finally, the output of this step is a vector graphics file containing
cut instructions which can be directly executed by the laser cutter.

3.5 Fabrication
In the next step, the optimized, still digital piece of parquetry is
physically fabricated. To this end, we use a laser cutter for cutting
the veneer boards from the back side and for engraving IDs which
facilitate the identification of individual patches during their assem-
bly. For other materials, this step could also be conducted using a
CNC mill or a water jet cutter. The patches are separated from the
rest of the veneer and laid out in a frame. To fix the patches, we
attach a back plate using wood putty. After the putty has dried, we
sand the veneers and finish them with clear coat or hard wax oil.
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3.6 Implementation details
The method was implemented in C++ using the OpenCV library
[Bradski 2000] and parallelized with OpenMP. Fitting a single patch
typically takes 0.5 s to 3 s on an Intel Core i7-5820K CPU, where
the runtime is dominated by template matching. Thus, the runtime
primarily depends on the number of pixels per patch, and on the
size of the wood samples tested.
During our experiments, we used a Plustek OpticPro A360 Plus

flatbed scanner for A3-sized veneer boards, and a Cruse Synchron
Table Scanner 4.0 for scanning larger panels. The fabrication (cut-
ting) was performed on a Trotec Rayjet with a 12W CO2 laser and
an Epilog Fusion 40 M2 engraver with a 75W CO2 laser.

4 RESULTS
We begin our evaluation with the analysis of user-controllable de-
sign choices in the optimization, such as the effect of different en-
ergy terms, different sizes and shapes of the individual patches. This
is followed by an ablation study, where we investigate the grad-
ual decline in quality that occurs when repeatedly producing the
same target image from the same wood veneer panel. We further
demonstrate a few examples of fabricated parquetry obtained from
different woods and under different conditions. Finally, we show
the robustness of our method with respect to different target images
by presenting synthetic results for different targets, each optimized
using the default parameter set.

Symbol Parameter Default
𝑤intens Intensity priority weight 0.5

𝑤edge Edge priority weight 0.5

𝑤hist Histogram matching weight 0.5

𝑠image Reconstructed image size (shorter axis) 360mm
𝑠patch Patch size 14mm
𝑛adaptive Adaptive patch levels 0

𝑤adaptive Adaptive patch quality factor 1.2

Table 1. User-controllable stylization parameters and their default values.

4.1 User-controlled stylization
Our method allows the stylization of the generated renditions of
target images based on user guidance. Before discussing the effect
of individual user-controllable parameter choices on the style of
the generated renditions, we first provide insights regarding the
involved physical materials. We found an image of a human eye
(Figure 12) to be a good target for quality assessment, because it
contains features with different frequencies, as well as rounded
structures. An overview over the user-controllable parameters re-
lated to stylization can be found in Table 1 and a more detailed
description in Section 3.

Materials. For the purpose of a better comparability, we gener-
ated synthetic renderings using the same scan of a wooden veneer
panel as input for all results in this section (unless otherwise noted).
The panel has a size of 1500mm × 1000mm and contains veneer
samples from various wood types. The woods used in our experi-
ments are not protected under CITES. They include maple burl, ash

burl, poplar burl, buckeye burl, elm burl, birch burl, walnut burl,
pine, wenge, santos rosewood, olive tree, makassar ebony, apple
tree, and zebrawood. We sanded the panel and applied a layer of
clear coat to enhance the contrast of the individual fiber strands.
The physical sample was scanned at 300 dpi using a Cruse Synchron
Table Scanner 4.0. A downscaled version of the scan can be found
in Figure 9.

Histogram matching. The target image gamut is generally larger
than the gamut of the wood textures. Without taking this into ac-
count, the template matching step will generally draw patches from
the gamut boundaries, which results in reproductions with high con-
trasts, but flat shading. By matching the target image histogram to
the wood texture histogram, we compress the target image gamut to
match the wood textures. This reduces the overall contrast, but puts
more emphasis on shading nuances, see Figures 5 and 10. We found
a simple interpolation between the matched and the unmatched
input image to effectively improve contrast while preserving the
original style of the image (Figure 5).

Patch size. We evaluated the influence of the patch size on the
style of the resulting target image renditions. Figure 8 shows ren-
dered results for different patch sizes ranging from 7.7 to 31.0mm.
Our experiments suggest that patches with 5mm edge length are the
lower bound for physical producibility using our pipeline. Smaller
patches could easily get lost and would be difficult to assemble.
The reconstruction quality improves as the patch size decreases
and approaches an almost photorealistic appearance for very small
patches. In contrast, reconstructions with coarse patch sizes exhibit
a different, more sketch-like style.
As demonstrated in Figure 8, exploiting the structures inherent

to the wooden materials greatly enhances the visual quality on all
resolutions, thereby providing evidence for the effectiveness of our
structurally aware template matching step. The perceived resolution
of any image depends on the image size, resolution, and viewing
distance. In order to give the reader an impression about the amount
of additional perceived resolution introduced by the wood pixels,
we include a comparison to a “baseline” that discards the wood
structure and instead replaces each patch by its mean color.

Finally, we evaluate the effect of adaptive patch sizes in Figure 11.
Analogous to adaptive grid methods, this allows us to reduce the
total number of wood patches without sacrificing reconstruction
quality. Regarding stylization, the larger patches result in an overall
smoother appearance with fewer cuts.

Feature vector weights. To analyze the effect of differentlyweighted
feature vectors in the template matching step (Equation 4) on the
wood puzzle appearance, we show results obtained for various pa-
rameter choices in Figure 12. The obtained renditions for the high-
lighted regions of the eyelid (top row) and the iris (lower row)
show that high weights for the intensity penalty𝑤intens enforce the
matching regarding the intensity features. Finer structures, such as
eyelashes, become better preserved by increasing the penalty𝑤edge
on the edge filter responses.

Boundary shape optimization. We also show the respective results
before and after cut optimization. As demonstrated in Figure 13, the
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Fig. 8. Synthetic Effect of different resolutions and refinement strategies on the reconstruction quality. We show reconstructions obtained using regular
grids (top row), the a-priori grid morphing refinement (second row), the a-posteriori cost-based patch refinement (third row), and a “baseline” where high
frequency features are removed and each patch is replaced by its mean color (bottom row). With decreasing resolution (from left to right), we observe that the
structurally aware filters, as well as the refinement schemes, are having an increased influence on reconstruction quality. The reconstruction quality obtained
with our proposed technique gracefully declines with patch resolution and still produces visually pleasing results for very coarse patches.

Fig. 9. Scan of the wooden veneer panel used for the results in Section 4.
The panel has physical dimensions of 1500mm × 1000mm and contains
veneer samples from various wood types. The fiducial markers facilitate
optical calibration on suitably equipped cutting systems.

use of square patches on a regular grid results in a pixel-like rendi-
tion of the target image. Merging neighboring patches according to
the data term reduces the pixelation effect, thereby putting more

Fig. 10. Synthetic The effect of histogram matching. Without histogram
matching (𝑤hist = 0, left), we obtain a higher contrast. With histogram
matching (𝑤hist = 1, right), the contrast is reduced, but the shading appears
less flat.

emphasis onto the underlying image structures. We found that the
representation of rounded, high-contrast image features specifically
benefits from the dynamic programming step.

4.2 Ablation study
Our approach is inherently resource constrained. Thus we expect
the reconstruction quality to scale with the area of available wood
samples. To evaluate this effect, we applied our pipeline several times
to generate renditions of the same target image under a decreasing
availability (and quality) of source patches. We have evaluated the
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Fig. 11. Synthetic Effect of different adaptive reconstruction parameters. From left to right: (𝑛adaptive = 1, 𝑤adaptive = 1.2) , (𝑛adaptive = 2, 𝑤adaptive = 1.2) ,
(𝑛adaptive = 1, 𝑤adaptive = 1.5) . As expected, high-frequency image structures are only touched for large values of 𝑤quality (i.e. we accept a large decline in
reconstruction quality). Nonetheless, we find the effect to be visually pleasing in all images and subject to personal preferences.

Fig. 12. Synthetic Effect of intensity vs. edge filter. The highlighted zoom-
ins depict the respective reconstructed regions for weights (𝑤intens, 𝑤edge) :
(1.0, 0.0) , (0.5, 0.5) , and (0.2, 0.8) from left to right. Using only intensity
penalty enforces the stylization tomatch intensity. Structural details become
increasingly well preserved with an increasing weight of the edge term.

Fig. 13. Synthetic The effect of the boundary shape optimization using
dynamic programming.Without dynamic programming (left), the generated
rendition of the target image has a pixelized style. With dynamic program-
ming (right), the cuts are optimized according to the underlying data term
and the rendition exhibits a smoother, more organic style.

effect of a sequential reconstruction using a circularly sorted prior-
ity queue and an interleaved, simultaneous reconstruction using a
queue sorted by image saliency. The respective results are shown
in Figure 14. We observe that the reconstruction quality decreases
gracefully and the target image stays recognizable until the very
last reconstruction. After the last reconstruction (partially) finished,

there was no space left on the veneer panel that was large enough
for another patch.

We noticed two types of degradation: intensity and high-frequency
detail degradation. Most noticeable is the degradation in overall in-
tensity matching after the panel runs out of dark patches (iteration
5). Less noticeable is the degradation of high-frequency content,
e.g. around the eyes after iteration 3. We note that the interleaved,
simultaneous reconstruction using image saliency produces gen-
erally favorable results over the circularly sorted reconstructions.
The degradations could be alleviated by reconstructing target im-
ages with different intensity distributions or, preferably, enforcing
sufficient resources during reconstruction.

4.3 Fabricated results
We present exemplary results of physically produced veneer puzzles
in Figures 1, 15 and 16. The veneer puzzles in Figures 1 and 15 have
been fabricated using multiple wood types. Since different wood
types can differ vastly in color and grain structure, these results
show a high contrast and perceived resolution. Fine details, such as
hair, eyebrows, or eyelashes are faithfully reproduced.

The results in Figure 16 have each been produced using a different
single wood type. The amount and quality of detail within a pixel is
inherently limited to the features present in the original material.
Woods with a limited feature gamut thus lead to a strongly stylized
outcome, which we imagine could also be utilized as an artistic tool.
We decided to finish most of the pieces using hard wax oil in

order to accomplish a natural look. A clear coat finish (Figure 16,
right) results in a highly specular appearance.

With row/column labels engraved on the back side, it takes about
1 h to 2 h for a single person to assemble a 500-piece parquetry
inside a suitably dimensioned frame. Although somewhat repetitive,
the authors found this activity to be satisfying and relaxing. For thin
veneers that are laminated onto a plywood substrate, the final image
remains hidden until the finished composition is turned around.

4.4 Synthetic results
In addition to the evaluation of different parameter choices, we show
renditions for several target images depicting portraits and animals
in Figure 17. To demonstrate the robustness of our approach with
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Fig. 14. Synthetic Renditions of a target image generated under a decreasing amount, and quality, of available patches from a single wood sample. Top
row: Patches are sorted by their distance to the image center and reconstructions are conducted sequentially from left to right, i.e. matching of the second
column starts after all patches of the first column have been matched. The last reconstruction did not complete because there were no valid patches left on the
wood sample. Bottom row: Patches from multiple copies of the same image are sorted by their image saliency score and reconstructions are carried out in an
interleaved manner. The first column shows the result for a single reconstructed target image, the second column for two simultaneously reconstructed target
images, and so on. For the first four columns, the differences are negligible. With less suitable source patches available, the interleaved reconstruction yields
higher quality results compared to the sequential reconstruction. Please zoom in to see image details.

Fig. 15. Fabricated A fabricated piece of wood parquetry made from four
different quarter-cut thick veneers (bottom left corner, from top to bottom:
oak, zebrawood, fir, American walnut). The target image is a human eye
(bottom right corner). The veneer puzzle consists of 28 × 17 wooden pixels
and has a total size of approx. 28 cm × 17 cm.

respect to different target images, each of these results has been pro-
duced using the default parameters shown in Table 1. The depicted
results demonstrate the potential of computational parquetry for
fine arts. Portraits and animal pictures can be easily recognized as
their characteristic appearance is preserved in the stylized result.
Please see the supplemental material for additional results.

5 DISCUSSION AND FUTURE WORK
In this work, we have focused on the generation of cut patterns
that are fabricable and can easily be assembled even by untrained

Fig. 16. Fabricated Exemplary results of fabricated parquetries using the
same target image (bottom center), but different wood types and finish.
The left image was fabricated using zebrawood with an oil finish. The
right image was produced using poplar burl veneer with clear coating,
resulting in a highly specular appearance with limited contrast. The samples
consist of 20 × 19 and 23 × 22wooden pixels respectively and their physical
dimensions are about 15 cm × 15 cm. The left puzzle has optimized patch
boundaries, the right puzzle consists of square patches.

users, which has led us to a solution based on regularly or semi-
regularly placed patches. We would like to note though that our
pipeline is not inherently restricted to these kinds of segmentations
and instead custom, user-defined segmentations can be provided as
well, e.g. to produce marquetry art comparable to the one presented
in Figure 2. Due to the structure-aware patch matching step, our
approach could be able to produce art pieces of even higher fidelity
than by manual matching. However, in this case, the complexity of
the wood puzzle art strongly depends on the provided segmentation
and the assembly might require a skillful artist to execute. See
Figure 18 for two synthetic results using user-defined segmentations
with highly varying style and complexity.

ACM Trans. Graph., Vol. 39, No. 2, Article 12. Publication date: February 2020.



Computational Parquetry: Fabricated Style Transfer with Wood Pixels • 12:11

Fig. 17. Synthetic Exemplary synthetic renditions of portraits and animals. Each of these results has been composed using the veneer sample panel shown in
Figure 9 and the default parameters listed in Table 1. Our algorithm is able to handle a wide range of input including color photographs, black and white
photographs, drawings, and paintings. The images show, from left to right, top to bottom: Grace Hopper, Eileen Collins, Felix Hausdorff, Katherine Johnson,
Ludwig van Beethoven, Whoopi Goldberg, Hedy Lamarr, Alan Turing, a piglet, a penguin, a Corgi, and a flamingo.

A practical drawback of our method is that it requires a surface
finish to be applied to the wood two times, once before scanning
and then again after the final assembly of the finished puzzle. The
first application is important, since this step changes the appearance

of the wood samples significantly. For the algorithm, it is crucial to
choose suitable patches based on their final appearance. We apply
the sanding/finishing procedure a second time in order to flatten
out small height variations, which are inevitable after puzzling. For
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Fig. 18. Synthetic Two results using custom segmentations of highly vary-
ing complexity. The left reconstruction is based on a hand-drawn segmenta-
tion, while the right reconstruction is based on a posterized version of the
input image. Depending on the segmentation, cutting and assembly can be
complex and might require a skillful artist to execute.

Fig. 19. We envision using deep learning to predict the change in surface
finish induced by a layer of oil or clear coat. Being able to do so would allevi-
ate the need for a pre-finishing step prior to texture acquisition. From left to
right: input image, surface finish appearance predicted by our preliminary
model, ground truth image.

a large-scale, automatic production of custom, wooden parquetry
puzzles, we would like to minimize the amount of manual interac-
tion. Thus, we conducted initial experiments on training a model
to predict the change of appearance from unfinished to finished
veneers. Using these predictions, it might become possible to defer
the application of surface finish until after the final puzzle has been
assembled. To this end, we trained a U-Net [Ronneberger et al. 2015]
on image pairs before and after applying the finish. Based on the
preliminary results in Figure 19, we believe that this would be a
good direction for future work.
Our approach allowed us to produce visually pleasing pieces of

wood parquetry, even without having a professional wood-working
background. However, we expect that certain technical imprecisions
(such as sub-perfectly applied clear coating) would bemitigated with
more experience. Also, we expect that cut clearances and discol-
orations will be improved with further fine tuning of the cutting
equipment.
Here, we treat wood as being a diffuse reflector and ignore any

directional effects. Real wood exhibits anisotropic BRDF characteris-
tics, which means that rotation of a part could be used to modulate
its intensity. This might also enable the generation of new types of
puzzles, where a hidden pattern is revealed by the right permutation
and rotation of some parts, comparable to the work of Sakurai et
al. [2018].

In our experiments, we restricted ourselves to fabricating par-
quetry based on wood veneers, since they are commonly available
and can be cut using a laser cutter. Generally, our pipeline is not
restricted to this type of material. Using a water jet cutter, other
materials like marble or brushed metal could be processed as well.
The process could also be extended to multi-material parquetry.

Parquetry generation is inherently resource-constrained and in
the scope of our work, the amount of available source samples was
limited. Having access to a larger database of veneers (either by
increasing the number of samples per wood type, or by introducing
new wood types) would certainly improve the reconstruction qual-
ity. However, since this is an artistic process, reaching the highest
reconstruction quality might not always be the goal. Using only a
single type of wood, or a selection of wood samples with a particular
structure, can lead to equally interesting and fascinating results, see
e.g. Figure 16.
When preparing our puzzle for assembly as a game, various

degrees of difficulty could be imagined. As all pieces are made
from wood, semantic labels are not immediately accessible as they
sometimes are in regular puzzles (water, buildings, skin, foliage,
sky/clouds, etc.). Given a bag of identically-shaped (square) pieces, it
would seem extremely challenging to arrive at the one “correct” solu-
tion; at the same time, there would be numerous mechanically valid
“approximate” solutions, or permutations between sets of similar-
looking parts. Here, the irregularly-shaped pieces generated by our
refinement steps offer welcome visual and tactile cues for assembly.

6 CONCLUSIONS
We approached the fabrication of structure-aware parquetry based
on a novel end-to-end pipeline that takes wood samples and a target
image as inputs and generates a cut pattern for parquetry puzzles.
To the best of our knowledge, there is no prior work that addresses
the challenges inherent to the task of producing a physical sam-
ple of wood parquetry using commodity hardware from minimal
input (a target image). The challenges include the single use of in-
dividual pieces of input material without being deformed, scaled,
blended, or filtered, as well as keeping track of resource use in order
to prevent source patches from colliding with each other, while still
faithfully reproducing the target image. Practical aspects regarding
the fabricability have also been taken into account. The varying
structural details within the wood samples lead to unique and fasci-
nating artworks, and the design of the overall process allows even
users without a particular woodworking background to experience
producing pieces of this new type of art.
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