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Abstract

In this document, we provide additional analyses and
quantitative evidence to support the discussions in the main
paper.

1. Extracting depth maps from volume data

We thank the authors of [3] and [2] for providing code
and data. One important observation we made on the pro-
vided material is that it can be hard to extract meaningful
depth maps from volumetric solutions. In Figure 1, we
show as an example the “Bike30” dataset [2] in 64×64 res-
olution, as reconstructed using the LCT method by O’Toole
et al. [3] and f-k migration by Lindell et al. [2] (code pro-
vided by authors). The detailed depictions shown in the
respective publications have often been cropped to a tight
temporal window, without which the solution would be
barely visible (Fig. 1).

In our experience, the quality of a depth map of this type
of scene mainly hinges on proper foreground-background
segmentation. In fact, for some other results contained in
these two papers, the authors masked depth data using a
ground-truth object silhouette.

For the depth maps for simpler scenes as shown in our
main paper, we obtained a segmentation by thresholding a
windowed, unfiltered max-intensity projection at 30% of its
maximum value. The authors of [2] and [3] approved this
in written personal conversation to be a fair representation
of their work.

Note that we are including this information not to argue
about either method’s performance or (dis-)advantages, but
merely to illustrate the difficulties in comparing volumetric
and depth map-based solutions.

2. Dataset generation parameters
We generated depth maps with our depth scene strategy,

i.e FlatNet and ShapeNet, by using the following parame-
ters:

• total number of samples in dataset: 40,000 (36,000 for
training)

• number of maximum models in depth scene = 5

• scale factor 0.5 ≤ s ≤ 1

• rotations along arbitrary axis in range −45 ≤ θ ≤ 45

• translation −0.9 ≤ t(x, y, z) ≤ 0.9 from the cubic
volume [−1, 1]3

where the parameter choices for transforming and picking
the models are based on the criteria that each depth map
must exhibit some depth variability (only-background depth
should not populate the dataset). We found these numbers
to be statistically sufficient for such requirements, but we
do not claim they are optimal for training.

On the other hand, obtaining depth maps from the Red-
wood database required pre-processing choices that we
found to have an impact on the final dataset statistics (fore-
ground/background). In this regard, we considered the fol-
lowing heuristics: 1) training dataset should contain little
amounts of noise possible, 2) rich class variability. To pro-
ceed, we uniformly sampled categories in order to reduce
class imbalance. When addressing noise, we remove miss-
ing pixels and border artifacts. We found that, in general,
this a difficult task to achieve across the entire dataset as
captures not only possess different resolutions, but also dif-
ferent noise according to several scene factors (indoors, out-
doors, motion, etc). We inpainted regions of invalid depth
(depth ≤ 0) using diffusion. Then, we extracted square
crops centered at the image center and downsampled them
to the network’s resolution. Finally, the extracted samples
were scaled to match our [−1, 1]3 convention.
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Figure 1. Reconstruction of a downsampled (64× 64× 512) ver-
sion of the Bike30 dataset [2] using LCT (a) and f-k migration
(b), shown in max-intensity projection as proposed by the authors
of the respective works. At the top of each group is the recon-
structed volume projected into the z − y plane. Only a small
portion of the volume (highlighted by a box) contains the target
object. From the full volume and a temporally windowed version
(suffix “ window”), we have obtained maximum-intensity projec-
tions (middle row) and attempted segmenting the object (bottom
row) by setting a threshold of 30% on the projected image or its
Laplacian-filtered version (suffix “ filt”).

3. Spatial/temporal downsampling series for
LCT reconstruction

We provide spatial and temporal decimation series for
the light cone transform (Figure 2). The coarsening of the
spatial dimension immediately maps to the output, since
LCT operates at a fixed resolution and cannot upsample.
In case of a temporal reduction, details wash out until they
become unrecognizable.

4. Evaluating regressor choices

An important component of our pipeline is making ar-
chitectural decisions suitable for treating the dimensional-
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Figure 2. LCT reconstructions [3] on spatially and temporally
downsampled data. Shown are a synthetic (top) and a real-world
(bottom) example. Full resolution (far left) is 32×32×256.

ity mismatch when mapping transient volumes to 2D depth
maps. As the target shape is globally encoded in the tran-
sient volume, a naive approach would be placing a dense
network directly correlating inputs and outputs. This ap-
proach results prohibitively expensive as it adds 1 billion
parameters for optimization. Hence, we resort to convolu-
tional regressors given their success for segmentation tasks.
While we build upon the work from [4, 1] to design our
3D/2D encoder-decoder, we find that numerous choices are
available when computing depth values at the output end
of the network. Authors in [2] opted for a multi-scale con-
volutional upsampler with by-pass connections that use the
intensity image to alleviate gradient flow. However, for the
NLOS case, intensity images computed from the transient
volumes contain very little information about the target due
to the presence of the diffuse wall. Thus, an upsampler net-
work such as in [2] is not useful.

To build our regressor module, we considered fully-
connected layers and traditional convolutional networks.
We trained four networks on the ShapeNet dataset with dif-
ferent regressor modules:

• a 1 × 1 convolution to average incoming depth maps
(Conv1× 1),

• a 1 × 1 convolution followed by one dense layers (1-
dense),



• a 1 × 1 convolution followed by two dense layers (2-
dense),

• a 2D convolutional network with four layers and filters
of decreasing size ((7,7), (5,5), (3,3), (2,2))

We evaluated these experiments by looking at the valida-
tion loss (mean squared error) on a test partition of 4, 000
pairs. Table 1 shows the final scores, where we see that
dense layers exhibit superior performance than convolu-
tional mechanisms. While 1-dense is slightly better than
2-dense, we chose the latter as it showed better performance
on real experimental data.

Conv1×1 1-dense 2-dense ConvNet
0.0465 0.0415 0.0419 0.0467

Table 1. Mean squared loss performance on validation set for dif-
ferent regressors

5. Supplementary Code and Data
We provide a package consisting of all our input datasets,

the full ShapeNet-trained model used across most of the
main paper, and basic Python/Keras code to make predic-
tions. Due to its size, we could not upload the package to
CMT. Instead, we share it via the Open Science Foundation:

https://osf.io/jmc7p/download
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[1] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,

Thomas Brox, and Olaf Ronneberger. 3d u-net: learning dense
volumetric segmentation from sparse annotation. In Interna-
tional conference on medical image computing and computer-
assisted intervention, pages 424–432. Springer, 2016. 2

[2] David B. Lindell, Gordon Wetzstein, and Matthew O’Toole.
Wave-based non-line-of-sight imaging using fast f-k migra-
tion. ACM Trans. Graph. (SIGGRAPH), 38(4):116, 2019. 1,
2

[3] Matthew O’Toole, David B. Lindell, and Gordon Wetzstein.
Confocal non-line-of-sight imaging based on the light-cone
transform. Nature, 555(25489):338–341, 2018. 1, 2

[4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015. 2


